This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Decompose a monomial in one variable into a power of a variable. (Contributed by Mario Carneiro, 7-Jan-2015) (Proof shortened by AV, 18-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplcoe1.p | |- P = ( I mPoly R ) |
|
| mplcoe1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mplcoe1.z | |- .0. = ( 0g ` R ) |
||
| mplcoe1.o | |- .1. = ( 1r ` R ) |
||
| mplcoe1.i | |- ( ph -> I e. W ) |
||
| mplcoe2.g | |- G = ( mulGrp ` P ) |
||
| mplcoe2.m | |- .^ = ( .g ` G ) |
||
| mplcoe2.v | |- V = ( I mVar R ) |
||
| mplcoe3.r | |- ( ph -> R e. Ring ) |
||
| mplcoe3.x | |- ( ph -> X e. I ) |
||
| mplcoe3.n | |- ( ph -> N e. NN0 ) |
||
| Assertion | mplcoe3 | |- ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplcoe1.p | |- P = ( I mPoly R ) |
|
| 2 | mplcoe1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mplcoe1.z | |- .0. = ( 0g ` R ) |
|
| 4 | mplcoe1.o | |- .1. = ( 1r ` R ) |
|
| 5 | mplcoe1.i | |- ( ph -> I e. W ) |
|
| 6 | mplcoe2.g | |- G = ( mulGrp ` P ) |
|
| 7 | mplcoe2.m | |- .^ = ( .g ` G ) |
|
| 8 | mplcoe2.v | |- V = ( I mVar R ) |
|
| 9 | mplcoe3.r | |- ( ph -> R e. Ring ) |
|
| 10 | mplcoe3.x | |- ( ph -> X e. I ) |
|
| 11 | mplcoe3.n | |- ( ph -> N e. NN0 ) |
|
| 12 | ifeq1 | |- ( x = 0 -> if ( k = X , x , 0 ) = if ( k = X , 0 , 0 ) ) |
|
| 13 | ifid | |- if ( k = X , 0 , 0 ) = 0 |
|
| 14 | 12 13 | eqtrdi | |- ( x = 0 -> if ( k = X , x , 0 ) = 0 ) |
| 15 | 14 | mpteq2dv | |- ( x = 0 -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> 0 ) ) |
| 16 | fconstmpt | |- ( I X. { 0 } ) = ( k e. I |-> 0 ) |
|
| 17 | 15 16 | eqtr4di | |- ( x = 0 -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( I X. { 0 } ) ) |
| 18 | 17 | eqeq2d | |- ( x = 0 -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( I X. { 0 } ) ) ) |
| 19 | 18 | ifbid | |- ( x = 0 -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( I X. { 0 } ) , .1. , .0. ) ) |
| 20 | 19 | mpteq2dv | |- ( x = 0 -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 21 | oveq1 | |- ( x = 0 -> ( x .^ ( V ` X ) ) = ( 0 .^ ( V ` X ) ) ) |
|
| 22 | 20 21 | eqeq12d | |- ( x = 0 -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) ) |
| 23 | 22 | imbi2d | |- ( x = 0 -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) ) ) |
| 24 | ifeq1 | |- ( x = n -> if ( k = X , x , 0 ) = if ( k = X , n , 0 ) ) |
|
| 25 | 24 | mpteq2dv | |- ( x = n -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , n , 0 ) ) ) |
| 26 | 25 | eqeq2d | |- ( x = n -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , n , 0 ) ) ) ) |
| 27 | 26 | ifbid | |- ( x = n -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) |
| 28 | 27 | mpteq2dv | |- ( x = n -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ) |
| 29 | oveq1 | |- ( x = n -> ( x .^ ( V ` X ) ) = ( n .^ ( V ` X ) ) ) |
|
| 30 | 28 29 | eqeq12d | |- ( x = n -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) ) |
| 31 | 30 | imbi2d | |- ( x = n -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) ) ) |
| 32 | ifeq1 | |- ( x = ( n + 1 ) -> if ( k = X , x , 0 ) = if ( k = X , ( n + 1 ) , 0 ) ) |
|
| 33 | 32 | mpteq2dv | |- ( x = ( n + 1 ) -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) |
| 34 | 33 | eqeq2d | |- ( x = ( n + 1 ) -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) ) |
| 35 | 34 | ifbid | |- ( x = ( n + 1 ) -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) |
| 36 | 35 | mpteq2dv | |- ( x = ( n + 1 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) ) |
| 37 | oveq1 | |- ( x = ( n + 1 ) -> ( x .^ ( V ` X ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) |
|
| 38 | 36 37 | eqeq12d | |- ( x = ( n + 1 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) |
| 39 | 38 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
| 40 | ifeq1 | |- ( x = N -> if ( k = X , x , 0 ) = if ( k = X , N , 0 ) ) |
|
| 41 | 40 | mpteq2dv | |- ( x = N -> ( k e. I |-> if ( k = X , x , 0 ) ) = ( k e. I |-> if ( k = X , N , 0 ) ) ) |
| 42 | 41 | eqeq2d | |- ( x = N -> ( y = ( k e. I |-> if ( k = X , x , 0 ) ) <-> y = ( k e. I |-> if ( k = X , N , 0 ) ) ) ) |
| 43 | 42 | ifbid | |- ( x = N -> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) |
| 44 | 43 | mpteq2dv | |- ( x = N -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) ) |
| 45 | oveq1 | |- ( x = N -> ( x .^ ( V ` X ) ) = ( N .^ ( V ` X ) ) ) |
|
| 46 | 44 45 | eqeq12d | |- ( x = N -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) <-> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) |
| 47 | 46 | imbi2d | |- ( x = N -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , x , 0 ) ) , .1. , .0. ) ) = ( x .^ ( V ` X ) ) ) <-> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) ) |
| 48 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 49 | 1 8 48 5 9 10 | mvrcl | |- ( ph -> ( V ` X ) e. ( Base ` P ) ) |
| 50 | 6 48 | mgpbas | |- ( Base ` P ) = ( Base ` G ) |
| 51 | eqid | |- ( 1r ` P ) = ( 1r ` P ) |
|
| 52 | 6 51 | ringidval | |- ( 1r ` P ) = ( 0g ` G ) |
| 53 | 50 52 7 | mulg0 | |- ( ( V ` X ) e. ( Base ` P ) -> ( 0 .^ ( V ` X ) ) = ( 1r ` P ) ) |
| 54 | 49 53 | syl | |- ( ph -> ( 0 .^ ( V ` X ) ) = ( 1r ` P ) ) |
| 55 | 1 2 3 4 51 5 9 | mpl1 | |- ( ph -> ( 1r ` P ) = ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 56 | 54 55 | eqtr2d | |- ( ph -> ( y e. D |-> if ( y = ( I X. { 0 } ) , .1. , .0. ) ) = ( 0 .^ ( V ` X ) ) ) |
| 57 | oveq1 | |- ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
|
| 58 | 5 | adantr | |- ( ( ph /\ n e. NN0 ) -> I e. W ) |
| 59 | 9 | adantr | |- ( ( ph /\ n e. NN0 ) -> R e. Ring ) |
| 60 | 2 | snifpsrbag | |- ( ( I e. W /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) e. D ) |
| 61 | 5 60 | sylan | |- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) e. D ) |
| 62 | eqid | |- ( .r ` P ) = ( .r ` P ) |
|
| 63 | 1nn0 | |- 1 e. NN0 |
|
| 64 | 63 | a1i | |- ( n e. NN0 -> 1 e. NN0 ) |
| 65 | 2 | snifpsrbag | |- ( ( I e. W /\ 1 e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) e. D ) |
| 66 | 5 64 65 | syl2an | |- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) e. D ) |
| 67 | 1 48 3 4 2 58 59 61 62 66 | mplmonmul | |- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) = ( y e. D |-> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) ) ) |
| 68 | 10 | adantr | |- ( ( ph /\ n e. NN0 ) -> X e. I ) |
| 69 | 8 2 3 4 58 59 68 | mvrval | |- ( ( ph /\ n e. NN0 ) -> ( V ` X ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) |
| 70 | 69 | eqcomd | |- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) = ( V ` X ) ) |
| 71 | 70 | oveq2d | |- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , 1 , 0 ) ) , .1. , .0. ) ) ) = ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) ) |
| 72 | simplr | |- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> n e. NN0 ) |
|
| 73 | 0nn0 | |- 0 e. NN0 |
|
| 74 | ifcl | |- ( ( n e. NN0 /\ 0 e. NN0 ) -> if ( k = X , n , 0 ) e. NN0 ) |
|
| 75 | 72 73 74 | sylancl | |- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> if ( k = X , n , 0 ) e. NN0 ) |
| 76 | 63 73 | ifcli | |- if ( k = X , 1 , 0 ) e. NN0 |
| 77 | 76 | a1i | |- ( ( ( ph /\ n e. NN0 ) /\ k e. I ) -> if ( k = X , 1 , 0 ) e. NN0 ) |
| 78 | eqidd | |- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , n , 0 ) ) = ( k e. I |-> if ( k = X , n , 0 ) ) ) |
|
| 79 | eqidd | |- ( ( ph /\ n e. NN0 ) -> ( k e. I |-> if ( k = X , 1 , 0 ) ) = ( k e. I |-> if ( k = X , 1 , 0 ) ) ) |
|
| 80 | 58 75 77 78 79 | offval2 | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) ) ) |
| 81 | iftrue | |- ( k = X -> if ( k = X , n , 0 ) = n ) |
|
| 82 | iftrue | |- ( k = X -> if ( k = X , 1 , 0 ) = 1 ) |
|
| 83 | 81 82 | oveq12d | |- ( k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = ( n + 1 ) ) |
| 84 | iftrue | |- ( k = X -> if ( k = X , ( n + 1 ) , 0 ) = ( n + 1 ) ) |
|
| 85 | 83 84 | eqtr4d | |- ( k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) ) |
| 86 | 00id | |- ( 0 + 0 ) = 0 |
|
| 87 | iffalse | |- ( -. k = X -> if ( k = X , n , 0 ) = 0 ) |
|
| 88 | iffalse | |- ( -. k = X -> if ( k = X , 1 , 0 ) = 0 ) |
|
| 89 | 87 88 | oveq12d | |- ( -. k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = ( 0 + 0 ) ) |
| 90 | iffalse | |- ( -. k = X -> if ( k = X , ( n + 1 ) , 0 ) = 0 ) |
|
| 91 | 86 89 90 | 3eqtr4a | |- ( -. k = X -> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) ) |
| 92 | 85 91 | pm2.61i | |- ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) = if ( k = X , ( n + 1 ) , 0 ) |
| 93 | 92 | mpteq2i | |- ( k e. I |-> ( if ( k = X , n , 0 ) + if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) |
| 94 | 80 93 | eqtrdi | |- ( ( ph /\ n e. NN0 ) -> ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) |
| 95 | 94 | eqeq2d | |- ( ( ph /\ n e. NN0 ) -> ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) <-> y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) ) ) |
| 96 | 95 | ifbid | |- ( ( ph /\ n e. NN0 ) -> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) = if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) |
| 97 | 96 | mpteq2dv | |- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( ( k e. I |-> if ( k = X , n , 0 ) ) oF + ( k e. I |-> if ( k = X , 1 , 0 ) ) ) , .1. , .0. ) ) = ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) ) |
| 98 | 67 71 97 | 3eqtr3rd | |- ( ( ph /\ n e. NN0 ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) ) |
| 99 | 1 5 9 | mplringd | |- ( ph -> P e. Ring ) |
| 100 | 6 | ringmgp | |- ( P e. Ring -> G e. Mnd ) |
| 101 | 99 100 | syl | |- ( ph -> G e. Mnd ) |
| 102 | 101 | adantr | |- ( ( ph /\ n e. NN0 ) -> G e. Mnd ) |
| 103 | simpr | |- ( ( ph /\ n e. NN0 ) -> n e. NN0 ) |
|
| 104 | 49 | adantr | |- ( ( ph /\ n e. NN0 ) -> ( V ` X ) e. ( Base ` P ) ) |
| 105 | 6 62 | mgpplusg | |- ( .r ` P ) = ( +g ` G ) |
| 106 | 50 7 105 | mulgnn0p1 | |- ( ( G e. Mnd /\ n e. NN0 /\ ( V ` X ) e. ( Base ` P ) ) -> ( ( n + 1 ) .^ ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
| 107 | 102 103 104 106 | syl3anc | |- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) .^ ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) |
| 108 | 98 107 | eqeq12d | |- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) <-> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) ( .r ` P ) ( V ` X ) ) = ( ( n .^ ( V ` X ) ) ( .r ` P ) ( V ` X ) ) ) ) |
| 109 | 57 108 | imbitrrid | |- ( ( ph /\ n e. NN0 ) -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) |
| 110 | 109 | expcom | |- ( n e. NN0 -> ( ph -> ( ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
| 111 | 110 | a2d | |- ( n e. NN0 -> ( ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , n , 0 ) ) , .1. , .0. ) ) = ( n .^ ( V ` X ) ) ) -> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , ( n + 1 ) , 0 ) ) , .1. , .0. ) ) = ( ( n + 1 ) .^ ( V ` X ) ) ) ) ) |
| 112 | 23 31 39 47 56 111 | nn0ind | |- ( N e. NN0 -> ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) ) |
| 113 | 11 112 | mpcom | |- ( ph -> ( y e. D |-> if ( y = ( k e. I |-> if ( k = X , N , 0 ) ) , .1. , .0. ) ) = ( N .^ ( V ` X ) ) ) |