This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a monomorphism and G is a section of F , then G is an inverse of F and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectmon.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| sectmon.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| monsect.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | ||
| monsect.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) | ||
| monsect.2 | ⊢ ( 𝜑 → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) | ||
| Assertion | monsect | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectmon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectmon.m | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 3 | sectmon.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 4 | sectmon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | sectmon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | sectmon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | monsect.n | ⊢ 𝑁 = ( Inv ‘ 𝐶 ) | |
| 8 | monsect.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) | |
| 9 | monsect.2 | ⊢ ( 𝜑 → 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 13 | 1 10 11 12 3 4 6 5 | issect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
| 14 | 9 13 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 15 | 14 | simp3d | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 16 | 15 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ) |
| 17 | 14 | simp2d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 18 | 14 | simp1d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 19 | 1 10 11 4 5 6 5 17 18 6 17 | catass | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) ) |
| 20 | 1 10 12 4 5 11 6 17 | catlid | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = 𝐹 ) |
| 21 | 1 10 12 4 5 11 6 17 | catrid | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐹 ) |
| 22 | 20 21 | eqtr4d | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 23 | 16 19 22 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 24 | 1 10 11 4 5 6 5 17 18 | catcocl | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 25 | 1 10 12 4 5 | catidcl | ⊢ ( 𝜑 → ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 26 | 1 10 11 2 4 5 6 5 8 24 25 | moni | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) ) = ( 𝐹 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 27 | 23 26 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 28 | 1 10 11 12 3 4 5 6 17 18 | issect2 | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 29 | 27 28 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) |
| 30 | 1 7 4 5 6 3 | isinv | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ↔ ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ∧ 𝐺 ( 𝑌 𝑆 𝑋 ) 𝐹 ) ) ) |
| 31 | 29 9 30 | mpbir2and | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑁 𝑌 ) 𝐺 ) |