This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a monomorphism and G is a section of F , then G is an inverse of F and they are both isomorphisms. This is also stated as "a monomorphism which is also a split epimorphism is an isomorphism". (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectmon.b | |- B = ( Base ` C ) |
|
| sectmon.m | |- M = ( Mono ` C ) |
||
| sectmon.s | |- S = ( Sect ` C ) |
||
| sectmon.c | |- ( ph -> C e. Cat ) |
||
| sectmon.x | |- ( ph -> X e. B ) |
||
| sectmon.y | |- ( ph -> Y e. B ) |
||
| monsect.n | |- N = ( Inv ` C ) |
||
| monsect.1 | |- ( ph -> F e. ( X M Y ) ) |
||
| monsect.2 | |- ( ph -> G ( Y S X ) F ) |
||
| Assertion | monsect | |- ( ph -> F ( X N Y ) G ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectmon.b | |- B = ( Base ` C ) |
|
| 2 | sectmon.m | |- M = ( Mono ` C ) |
|
| 3 | sectmon.s | |- S = ( Sect ` C ) |
|
| 4 | sectmon.c | |- ( ph -> C e. Cat ) |
|
| 5 | sectmon.x | |- ( ph -> X e. B ) |
|
| 6 | sectmon.y | |- ( ph -> Y e. B ) |
|
| 7 | monsect.n | |- N = ( Inv ` C ) |
|
| 8 | monsect.1 | |- ( ph -> F e. ( X M Y ) ) |
|
| 9 | monsect.2 | |- ( ph -> G ( Y S X ) F ) |
|
| 10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 11 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 12 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 13 | 1 10 11 12 3 4 6 5 | issect | |- ( ph -> ( G ( Y S X ) F <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 14 | 9 13 | mpbid | |- ( ph -> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) ) |
| 15 | 14 | simp3d | |- ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) |
| 16 | 15 | oveq1d | |- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) ) |
| 17 | 14 | simp2d | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 18 | 14 | simp1d | |- ( ph -> G e. ( Y ( Hom ` C ) X ) ) |
| 19 | 1 10 11 4 5 6 5 17 18 6 17 | catass | |- ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) ) |
| 20 | 1 10 12 4 5 11 6 17 | catlid | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = F ) |
| 21 | 1 10 12 4 5 11 6 17 | catrid | |- ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = F ) |
| 22 | 20 21 | eqtr4d | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 23 | 16 19 22 | 3eqtr3d | |- ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 24 | 1 10 11 4 5 6 5 17 18 | catcocl | |- ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) e. ( X ( Hom ` C ) X ) ) |
| 25 | 1 10 12 4 5 | catidcl | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 26 | 1 10 11 2 4 5 6 5 8 24 25 | moni | |- ( ph -> ( ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 27 | 23 26 | mpbid | |- ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) |
| 28 | 1 10 11 12 3 4 5 6 17 18 | issect2 | |- ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 29 | 27 28 | mpbird | |- ( ph -> F ( X S Y ) G ) |
| 30 | 1 7 4 5 6 3 | isinv | |- ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) ) |
| 31 | 29 9 30 | mpbir2and | |- ( ph -> F ( X N Y ) G ) |