This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a monomorphism. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | ||
| ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| ismon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| ismon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| moni.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| moni.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) | ||
| moni.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) | ||
| moni.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) | ||
| Assertion | moni | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismon.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | ismon.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | ismon.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | ismon.s | ⊢ 𝑀 = ( Mono ‘ 𝐶 ) | |
| 5 | ismon.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 6 | ismon.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ismon.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 8 | moni.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 9 | moni.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ) | |
| 10 | moni.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) | |
| 11 | moni.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) | |
| 12 | 1 2 3 4 5 6 7 | ismon2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝑀 𝑌 ) ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) ) |
| 13 | 9 12 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) ) |
| 14 | 13 | simprd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ) |
| 15 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑍 𝐻 𝑋 ) ) |
| 16 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝑧 = 𝑍 ) | |
| 17 | 16 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( 𝑧 𝐻 𝑋 ) = ( 𝑍 𝐻 𝑋 ) ) |
| 18 | 15 17 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐺 ∈ ( 𝑧 𝐻 𝑋 ) ) |
| 19 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 ∈ ( 𝑍 𝐻 𝑋 ) ) |
| 20 | 19 17 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑋 ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑋 ) ) |
| 22 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝑧 = 𝑍 ) | |
| 23 | 22 | opeq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 〈 𝑧 , 𝑋 〉 = 〈 𝑍 , 𝑋 〉 ) |
| 24 | 23 | oveq1d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) ) |
| 25 | eqidd | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝐹 = 𝐹 ) | |
| 26 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → 𝑔 = 𝐺 ) | |
| 27 | 24 25 26 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) ) |
| 28 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ℎ = 𝐾 ) | |
| 29 | 24 25 28 | oveq123d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) |
| 30 | 27 29 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) ↔ ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) ) |
| 31 | 26 28 | eqeq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( 𝑔 = ℎ ↔ 𝐺 = 𝐾 ) ) |
| 32 | 30 31 | imbi12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) ∧ ℎ = 𝐾 ) → ( ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) ↔ ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
| 33 | 21 32 | rspcdv | ⊢ ( ( ( 𝜑 ∧ 𝑧 = 𝑍 ) ∧ 𝑔 = 𝐺 ) → ( ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
| 34 | 18 33 | rspcimdv | ⊢ ( ( 𝜑 ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
| 35 | 8 34 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑔 ∈ ( 𝑧 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑧 𝐻 𝑋 ) ( ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑧 , 𝑋 〉 · 𝑌 ) ℎ ) → 𝑔 = ℎ ) → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) ) |
| 36 | 14 35 | mpd | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) → 𝐺 = 𝐾 ) ) |
| 37 | oveq2 | ⊢ ( 𝐺 = 𝐾 → ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ) | |
| 38 | 36 37 | impbid1 | ⊢ ( 𝜑 → ( ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 𝐹 ( 〈 𝑍 , 𝑋 〉 · 𝑌 ) 𝐾 ) ↔ 𝐺 = 𝐾 ) ) |