This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property " F is a section of G ". (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| issect.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issect.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | issect.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | issect.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | issect.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 5 | issect.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 6 | issect.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | issect.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | issect.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | 1 2 3 4 5 6 7 8 | sectfval | ⊢ ( 𝜑 → ( 𝑋 𝑆 𝑌 ) = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } ) |
| 10 | 9 | breqd | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ) ) |
| 11 | oveq12 | ⊢ ( ( 𝑔 = 𝐺 ∧ 𝑓 = 𝐹 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
| 13 | 12 | eqeq1d | ⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 14 | eqid | ⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } = { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } | |
| 15 | 13 14 | brab2a | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 16 | df-3an | ⊢ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ↔ ( ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) | |
| 17 | 15 16 | bitr4i | ⊢ ( 𝐹 { 〈 𝑓 , 𝑔 〉 ∣ ( ( 𝑓 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ) ∧ ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝑓 ) = ( 1 ‘ 𝑋 ) ) } 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 18 | 10 17 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) ) |