This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If F is a section of G , then G is an epimorphism. Proposition 7.42 of Adamek p. 112. An epimorphism that arises from a section is also known as asplit epimorphism. (Contributed by Mario Carneiro, 3-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | ||
| sectepi.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| sectepi.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | ||
| Assertion | sectepi | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐸 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectepi.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectepi.e | ⊢ 𝐸 = ( Epi ‘ 𝐶 ) | |
| 3 | sectepi.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 4 | sectepi.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | sectepi.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | sectepi.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | sectepi.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 8 | eqid | ⊢ ( oppCat ‘ 𝐶 ) = ( oppCat ‘ 𝐶 ) | |
| 9 | 8 1 | oppcbas | ⊢ 𝐵 = ( Base ‘ ( oppCat ‘ 𝐶 ) ) |
| 10 | eqid | ⊢ ( Mono ‘ ( oppCat ‘ 𝐶 ) ) = ( Mono ‘ ( oppCat ‘ 𝐶 ) ) | |
| 11 | eqid | ⊢ ( Sect ‘ ( oppCat ‘ 𝐶 ) ) = ( Sect ‘ ( oppCat ‘ 𝐶 ) ) | |
| 12 | 8 | oppccat | ⊢ ( 𝐶 ∈ Cat → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 13 | 4 12 | syl | ⊢ ( 𝜑 → ( oppCat ‘ 𝐶 ) ∈ Cat ) |
| 14 | 1 8 4 5 6 3 11 | oppcsect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ↔ 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) ) |
| 15 | 7 14 | mpbird | ⊢ ( 𝜑 → 𝐺 ( 𝑋 ( Sect ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) 𝐹 ) |
| 16 | 9 10 11 13 5 6 15 | sectmon | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) ) |
| 17 | 8 4 10 2 | oppcmon | ⊢ ( 𝜑 → ( 𝑋 ( Mono ‘ ( oppCat ‘ 𝐶 ) ) 𝑌 ) = ( 𝑌 𝐸 𝑋 ) ) |
| 18 | 16 17 | eleqtrd | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐸 𝑋 ) ) |