This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catcocl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catcocl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catcocl.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catcocl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catcocl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catcocl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| catcocl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| catcocl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| catcocl.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | ||
| catass.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | ||
| catass.g | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) | ||
| Assertion | catass | ⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catcocl.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catcocl.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catcocl.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | catcocl.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catcocl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | catcocl.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | catcocl.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | catcocl.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 9 | catcocl.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) | |
| 10 | catass.w | ⊢ ( 𝜑 → 𝑊 ∈ 𝐵 ) | |
| 11 | catass.g | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) | |
| 12 | 1 2 3 | iscat | ⊢ ( 𝐶 ∈ Cat → ( 𝐶 ∈ Cat ↔ ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) ) |
| 13 | 12 | ibi | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 14 | 4 13 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) ) |
| 15 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 16 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → 𝑍 ∈ 𝐵 ) |
| 17 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) |
| 18 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑥 = 𝑋 ) | |
| 19 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝑦 = 𝑌 ) | |
| 20 | 18 19 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑌 ) ) |
| 21 | 17 20 | eleqtrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 22 | 9 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑌 𝐻 𝑍 ) ) |
| 23 | simpllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑦 = 𝑌 ) | |
| 24 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝑧 = 𝑍 ) | |
| 25 | 23 24 | oveq12d | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( 𝑦 𝐻 𝑧 ) = ( 𝑌 𝐻 𝑍 ) ) |
| 26 | 22 25 | eleqtrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → 𝐺 ∈ ( 𝑦 𝐻 𝑧 ) ) |
| 27 | 10 | ad5antr | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → 𝑊 ∈ 𝐵 ) |
| 28 | 11 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑍 𝐻 𝑊 ) ) |
| 29 | simp-4r | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑧 = 𝑍 ) | |
| 30 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝑤 = 𝑊 ) | |
| 31 | 29 30 | oveq12d | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑍 𝐻 𝑊 ) ) |
| 32 | 28 31 | eleqtrrd | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → 𝐾 ∈ ( 𝑧 𝐻 𝑤 ) ) |
| 33 | simp-7r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑥 = 𝑋 ) | |
| 34 | simp-6r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑦 = 𝑌 ) | |
| 35 | 33 34 | opeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑥 , 𝑦 〉 = 〈 𝑋 , 𝑌 〉 ) |
| 36 | simplr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑤 = 𝑊 ) | |
| 37 | 35 36 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) ) |
| 38 | simp-5r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑧 = 𝑍 ) | |
| 39 | 34 38 | opeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑦 , 𝑧 〉 = 〈 𝑌 , 𝑍 〉 ) |
| 40 | 39 36 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) ) |
| 41 | simpr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑘 = 𝐾 ) | |
| 42 | simpllr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑔 = 𝐺 ) | |
| 43 | 40 41 42 | oveq123d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) = ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ) |
| 44 | simp-4r | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 𝑓 = 𝐹 ) | |
| 45 | 37 43 44 | oveq123d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) ) |
| 46 | 33 38 | opeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → 〈 𝑥 , 𝑧 〉 = 〈 𝑋 , 𝑍 〉 ) |
| 47 | 46 36 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) = ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ) |
| 48 | 35 38 | oveq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) |
| 49 | 48 42 44 | oveq123d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) |
| 50 | 47 41 49 | oveq123d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
| 51 | 45 50 | eqeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) ∧ 𝑘 = 𝐾 ) → ( ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ↔ ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 52 | 32 51 | rspcdv | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) ∧ 𝑤 = 𝑊 ) → ( ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 53 | 27 52 | rspcimdv | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 54 | 53 | adantld | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 55 | 26 54 | rspcimdv | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) ∧ 𝑓 = 𝐹 ) → ( ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 56 | 21 55 | rspcimdv | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) ∧ 𝑧 = 𝑍 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 57 | 16 56 | rspcimdv | ⊢ ( ( ( 𝜑 ∧ 𝑥 = 𝑋 ) ∧ 𝑦 = 𝑌 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 58 | 15 57 | rspcimdv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 59 | 58 | adantld | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 60 | 5 59 | rspcimdv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ( ∃ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 𝐻 𝑧 ) ( ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ∈ ( 𝑥 𝐻 𝑧 ) ∧ ∀ 𝑤 ∈ 𝐵 ∀ 𝑘 ∈ ( 𝑧 𝐻 𝑤 ) ( ( 𝑘 ( 〈 𝑦 , 𝑧 〉 · 𝑤 ) 𝑔 ) ( 〈 𝑥 , 𝑦 〉 · 𝑤 ) 𝑓 ) = ( 𝑘 ( 〈 𝑥 , 𝑧 〉 · 𝑤 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 · 𝑧 ) 𝑓 ) ) ) ) → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 61 | 14 60 | mpd | ⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑊 ) 𝐺 ) ( 〈 𝑋 , 𝑌 〉 · 𝑊 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑊 ) ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |