This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for minveco . Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | ||
| minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | ||
| minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | ||
| minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | ||
| minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | ||
| minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | ||
| Assertion | minvecolem7 | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minveco.x | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | minveco.m | ⊢ 𝑀 = ( −𝑣 ‘ 𝑈 ) | |
| 3 | minveco.n | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 4 | minveco.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 5 | minveco.u | ⊢ ( 𝜑 → 𝑈 ∈ CPreHilOLD ) | |
| 6 | minveco.w | ⊢ ( 𝜑 → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) | |
| 7 | minveco.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | minveco.d | ⊢ 𝐷 = ( IndMet ‘ 𝑈 ) | |
| 9 | minveco.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 10 | minveco.r | ⊢ 𝑅 = ran ( 𝑦 ∈ 𝑌 ↦ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) | |
| 11 | minveco.s | ⊢ 𝑆 = inf ( 𝑅 , ℝ , < ) | |
| 12 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem5 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |
| 13 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑈 ∈ CPreHilOLD ) |
| 14 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑊 ∈ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ) |
| 15 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝐴 ∈ 𝑋 ) |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 0 ∈ ℝ ) |
| 18 | 0le0 | ⊢ 0 ≤ 0 | |
| 19 | 18 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 0 ≤ 0 ) |
| 20 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑥 ∈ 𝑌 ) | |
| 21 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → 𝑤 ∈ 𝑌 ) | |
| 22 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) | |
| 23 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) | |
| 24 | 1 2 3 4 13 14 15 8 9 10 11 17 19 20 21 22 23 | minvecolem2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) ∧ ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ) |
| 25 | 24 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ) ) |
| 26 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem6 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 27 | 26 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 | minvecolem6 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑌 ) → ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 29 | 28 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 30 | 27 29 | anbi12d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( ( 𝐴 𝐷 𝑥 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ∧ ( ( 𝐴 𝐷 𝑤 ) ↑ 2 ) ≤ ( ( 𝑆 ↑ 2 ) + 0 ) ) ↔ ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) ) |
| 31 | 4cn | ⊢ 4 ∈ ℂ | |
| 32 | 31 | mul01i | ⊢ ( 4 · 0 ) = 0 |
| 33 | 32 | breq2i | ⊢ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ↔ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ) |
| 34 | phnv | ⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 ∈ NrmCVec ) | |
| 35 | 5 34 | syl | ⊢ ( 𝜑 → 𝑈 ∈ NrmCVec ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑈 ∈ NrmCVec ) |
| 37 | 1 8 | imsmet | ⊢ ( 𝑈 ∈ NrmCVec → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 38 | 36 37 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 39 | inss1 | ⊢ ( ( SubSp ‘ 𝑈 ) ∩ CBan ) ⊆ ( SubSp ‘ 𝑈 ) | |
| 40 | 39 6 | sselid | ⊢ ( 𝜑 → 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) |
| 41 | eqid | ⊢ ( SubSp ‘ 𝑈 ) = ( SubSp ‘ 𝑈 ) | |
| 42 | 1 4 41 | sspba | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ ( SubSp ‘ 𝑈 ) ) → 𝑌 ⊆ 𝑋 ) |
| 43 | 35 40 42 | syl2anc | ⊢ ( 𝜑 → 𝑌 ⊆ 𝑋 ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑌 ⊆ 𝑋 ) |
| 45 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑌 ) | |
| 46 | 44 45 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑋 ) |
| 47 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑌 ) | |
| 48 | 44 47 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 𝑤 ∈ 𝑋 ) |
| 49 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( 𝑥 𝐷 𝑤 ) ∈ ℝ ) | |
| 50 | 38 46 48 49 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑤 ) ∈ ℝ ) |
| 51 | 50 | sqge0d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) |
| 52 | 51 | biantrud | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) |
| 53 | 50 | resqcld | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ∈ ℝ ) |
| 54 | letri3 | ⊢ ( ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ∈ ℝ ∧ 0 ∈ ℝ ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) | |
| 55 | 53 16 54 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ∧ 0 ≤ ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ) ) ) |
| 56 | 50 | recnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( 𝑥 𝐷 𝑤 ) ∈ ℂ ) |
| 57 | sqeq0 | ⊢ ( ( 𝑥 𝐷 𝑤 ) ∈ ℂ → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( 𝑥 𝐷 𝑤 ) = 0 ) ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ ( 𝑥 𝐷 𝑤 ) = 0 ) ) |
| 59 | meteq0 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑥 𝐷 𝑤 ) = 0 ↔ 𝑥 = 𝑤 ) ) | |
| 60 | 38 46 48 59 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( 𝑥 𝐷 𝑤 ) = 0 ↔ 𝑥 = 𝑤 ) ) |
| 61 | 58 60 | bitrd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) = 0 ↔ 𝑥 = 𝑤 ) ) |
| 62 | 52 55 61 | 3bitr2d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ 0 ↔ 𝑥 = 𝑤 ) ) |
| 63 | 33 62 | bitrid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ( 𝑥 𝐷 𝑤 ) ↑ 2 ) ≤ ( 4 · 0 ) ↔ 𝑥 = 𝑤 ) ) |
| 64 | 25 30 63 | 3imtr3d | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑤 ∈ 𝑌 ) ) → ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) |
| 65 | 64 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) |
| 66 | oveq2 | ⊢ ( 𝑥 = 𝑤 → ( 𝐴 𝑀 𝑥 ) = ( 𝐴 𝑀 𝑤 ) ) | |
| 67 | 66 | fveq2d | ⊢ ( 𝑥 = 𝑤 → ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) = ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ) |
| 68 | 67 | breq1d | ⊢ ( 𝑥 = 𝑤 → ( ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 69 | 68 | ralbidv | ⊢ ( 𝑥 = 𝑤 → ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) ) |
| 70 | 69 | reu4 | ⊢ ( ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ↔ ( ∃ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑤 ∈ 𝑌 ( ( ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑤 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) → 𝑥 = 𝑤 ) ) ) |
| 71 | 12 65 70 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( 𝑁 ‘ ( 𝐴 𝑀 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝐴 𝑀 𝑦 ) ) ) |