This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997) (Proof shortened by Wolf Lammen, 17-Sep-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mopick | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mo | ⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 2 | sp | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) | |
| 3 | pm3.45 | ⊢ ( ( 𝜑 → 𝑥 = 𝑦 ) → ( ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑦 ∧ 𝜓 ) ) ) | |
| 4 | 3 | aleximi | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) ) ) |
| 5 | ax12ev2 | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜓 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) | |
| 6 | 4 5 | syl6 | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝑥 = 𝑦 → 𝜓 ) ) ) |
| 7 | 2 6 | syl5d | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 9 | 1 8 | sylbi | ⊢ ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 → 𝜓 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ∃* 𝑥 𝜑 ∧ ∃ 𝑥 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) |