This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every convergent filter in a metric space is a Cauchy filter. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | flimcfil | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 3 | 2 | flimfil | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 5 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑋 = ∪ 𝐽 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( Fil ‘ 𝑋 ) = ( Fil ‘ ∪ 𝐽 ) ) |
| 8 | 4 7 | eleqtrrd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) |
| 9 | 2 | flimelbas | ⊢ ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 10 | 9 | ad2antlr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ∪ 𝐽 ) |
| 11 | 5 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑋 = ∪ 𝐽 ) |
| 12 | 10 11 | eleqtrrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ 𝑋 ) |
| 13 | simplr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 14 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐽 ∈ Top ) |
| 16 | simpll | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 17 | rpxr | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ* ) | |
| 18 | 17 | adantl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ* ) |
| 19 | 1 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
| 20 | 16 12 18 19 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ) |
| 21 | simpr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) | |
| 22 | blcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) | |
| 23 | 16 12 21 22 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 24 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐽 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) | |
| 25 | 15 20 23 24 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) |
| 26 | flimnei | ⊢ ( ( 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) | |
| 27 | 13 25 26 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 28 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) = ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ) | |
| 29 | 28 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ↔ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) |
| 30 | 29 | rspcev | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 31 | 12 27 30 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 32 | 31 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) |
| 33 | iscfil3 | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) ) | |
| 34 | 33 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ 𝑋 ( 𝑦 ( ball ‘ 𝐷 ) 𝑥 ) ∈ 𝐹 ) ) ) |
| 35 | 8 32 34 | mpbir2and | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) |