This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cauchy filter on a metric subspace. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilres | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 2 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 4 | simp3 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ∈ 𝐹 ) | |
| 5 | fbncp | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) |
| 7 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) | |
| 8 | 7 | 3adant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝑌 ⊆ 𝑋 ) |
| 9 | trfil3 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) | |
| 10 | 1 8 9 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ↔ ¬ ( 𝑋 ∖ 𝑌 ) ∈ 𝐹 ) ) |
| 11 | 6 10 | mpbird | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
| 12 | 11 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ) |
| 13 | cfili | ⊢ ( ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) | |
| 14 | 13 | adantll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
| 15 | simpll2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝐹 ∈ ( Fil ‘ 𝑋 ) ) | |
| 16 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → 𝑌 ∈ 𝐹 ) | |
| 17 | 15 16 | jca | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ) |
| 18 | elrestr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) | |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) |
| 20 | 17 19 | sylan | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ) |
| 21 | inss1 | ⊢ ( 𝑠 ∩ 𝑌 ) ⊆ 𝑠 | |
| 22 | ss2ralv | ⊢ ( ( 𝑠 ∩ 𝑌 ) ⊆ 𝑠 → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
| 24 | elinel2 | ⊢ ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) → 𝑢 ∈ 𝑌 ) | |
| 25 | elinel2 | ⊢ ( 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) → 𝑣 ∈ 𝑌 ) | |
| 26 | ovres | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) = ( 𝑢 𝐷 𝑣 ) ) | |
| 27 | 26 | breq1d | ⊢ ( ( 𝑢 ∈ 𝑌 ∧ 𝑣 ∈ 𝑌 ) → ( ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 28 | 24 25 27 | syl2an | ⊢ ( ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∧ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ) → ( ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 29 | 28 | ralbidva | ⊢ ( 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) ) |
| 30 | 29 | ralbiia | ⊢ ( ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 𝐷 𝑣 ) < 𝑥 ) |
| 31 | 23 30 | sylibr | ⊢ ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 32 | raleq | ⊢ ( 𝑦 = ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) | |
| 33 | 32 | raleqbi1dv | ⊢ ( 𝑦 = ( 𝑠 ∩ 𝑌 ) → ( ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ↔ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
| 34 | 33 | rspcev | ⊢ ( ( ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) ∧ ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 35 | 34 | ex | ⊢ ( ( 𝑠 ∩ 𝑌 ) ∈ ( 𝐹 ↾t 𝑌 ) → ( ∀ 𝑢 ∈ ( 𝑠 ∩ 𝑌 ) ∀ 𝑣 ∈ ( 𝑠 ∩ 𝑌 ) ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
| 36 | 20 31 35 | syl2im | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑠 ∈ 𝐹 ) → ( ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
| 37 | 36 | rexlimdva | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑠 ∈ 𝐹 ∀ 𝑢 ∈ 𝑠 ∀ 𝑣 ∈ 𝑠 ( 𝑢 𝐷 𝑣 ) < 𝑥 → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) |
| 38 | 14 37 | mpd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 39 | 38 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) |
| 40 | simp1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 41 | xmetres2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑌 ⊆ 𝑋 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) | |
| 42 | 40 8 41 | syl2anc | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) ) |
| 44 | iscfil2 | ⊢ ( ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ∈ ( ∞Met ‘ 𝑌 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) ) | |
| 45 | 43 44 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ↔ ( ( 𝐹 ↾t 𝑌 ) ∈ ( Fil ‘ 𝑌 ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑦 ∈ ( 𝐹 ↾t 𝑌 ) ∀ 𝑢 ∈ 𝑦 ∀ 𝑣 ∈ 𝑦 ( 𝑢 ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) 𝑣 ) < 𝑥 ) ) ) |
| 46 | 12 39 45 | mpbir2and | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) |
| 47 | 46 | ex | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) → ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |
| 48 | cfilresi | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) | |
| 49 | 48 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 50 | 49 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 51 | fgtr | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) = 𝐹 ) | |
| 52 | 51 | 3adant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) = 𝐹 ) |
| 53 | 52 | eleq1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝑋 filGen ( 𝐹 ↾t 𝑌 ) ) ∈ ( CauFil ‘ 𝐷 ) ↔ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 54 | 50 53 | sylibd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) → 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) ) |
| 55 | 47 54 | impbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ 𝑌 ∈ 𝐹 ) → ( 𝐹 ∈ ( CauFil ‘ 𝐷 ) ↔ ( 𝐹 ↾t 𝑌 ) ∈ ( CauFil ‘ ( 𝐷 ↾ ( 𝑌 × 𝑌 ) ) ) ) ) |