This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of hausflim . A filter in a Hausdorff space has at most one limit. (Contributed by FL, 14-Nov-2010) (Revised by Mario Carneiro, 21-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hausflimi | ⊢ ( 𝐽 ∈ Haus → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝐽 ∈ Haus ) | |
| 2 | simprll | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 5 | 2 4 | syl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 6 | simprlr | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) | |
| 7 | 3 | flimelbas | ⊢ ( 𝑦 ∈ ( 𝐽 fLim 𝐹 ) → 𝑦 ∈ ∪ 𝐽 ) |
| 8 | 6 7 | syl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑦 ∈ ∪ 𝐽 ) |
| 9 | simprr | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 ≠ 𝑦 ) | |
| 10 | 3 | hausnei | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ∈ ∪ 𝐽 ∧ 𝑦 ∈ ∪ 𝐽 ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 11 | 1 5 8 9 10 | syl13anc | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 12 | df-3an | ⊢ ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ↔ ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) | |
| 13 | simprl | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ) | |
| 14 | hausflimlem | ⊢ ( ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) | |
| 15 | 14 | 3expa | ⊢ ( ( ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) |
| 16 | 13 15 | sylanl1 | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ) → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) |
| 17 | 16 | a1d | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ) → ( 𝑥 ≠ 𝑦 → ( 𝑢 ∩ 𝑣 ) ≠ ∅ ) ) |
| 18 | 17 | necon4d | ⊢ ( ( ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) ∧ ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ) → ( ( 𝑢 ∩ 𝑣 ) = ∅ → 𝑥 = 𝑦 ) ) |
| 19 | 18 | expimpd | ⊢ ( ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) → ( ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ) ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → 𝑥 = 𝑦 ) ) |
| 20 | 12 19 | biimtrid | ⊢ ( ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑣 ∈ 𝐽 ) ) → ( ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → 𝑥 = 𝑦 ) ) |
| 21 | 20 | rexlimdvva | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐽 ( 𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → 𝑥 = 𝑦 ) ) |
| 22 | 11 21 | mpd | ⊢ ( ( 𝐽 ∈ Haus ∧ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑥 ≠ 𝑦 ) ) → 𝑥 = 𝑦 ) |
| 23 | 22 | expr | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ) → ( 𝑥 ≠ 𝑦 → 𝑥 = 𝑦 ) ) |
| 24 | 23 | necon1bd | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ) → ( ¬ 𝑥 = 𝑦 → 𝑥 = 𝑦 ) ) |
| 25 | 24 | pm2.18d | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ) → 𝑥 = 𝑦 ) |
| 26 | 25 | ex | ⊢ ( 𝐽 ∈ Haus → ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 = 𝑦 ) ) |
| 27 | 26 | alrimivv | ⊢ ( 𝐽 ∈ Haus → ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 = 𝑦 ) ) |
| 28 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) ) | |
| 29 | 28 | mo4 | ⊢ ( ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 = 𝑦 ) ) |
| 30 | 27 29 | sylibr | ⊢ ( 𝐽 ∈ Haus → ∃* 𝑥 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) |