This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| Assertion | metdseq0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | simpll1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 4 | simprl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝑧 ∈ 𝐽 ) | |
| 5 | simprr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → 𝐴 ∈ 𝑧 ) | |
| 6 | 2 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) → ∃ 𝑟 ∈ ℝ+ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → ∃ 𝑟 ∈ ℝ+ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) |
| 8 | simprr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) | |
| 9 | 8 | ssrind | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ⊆ ( 𝑧 ∩ 𝑆 ) ) |
| 10 | rpgt0 | ⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) | |
| 11 | 0re | ⊢ 0 ∈ ℝ | |
| 12 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 13 | ltnle | ⊢ ( ( 0 ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( 0 < 𝑟 ↔ ¬ 𝑟 ≤ 0 ) ) | |
| 14 | 11 12 13 | sylancr | ⊢ ( 𝑟 ∈ ℝ+ → ( 0 < 𝑟 ↔ ¬ 𝑟 ≤ 0 ) ) |
| 15 | 10 14 | mpbid | ⊢ ( 𝑟 ∈ ℝ+ → ¬ 𝑟 ≤ 0 ) |
| 16 | 15 | ad2antrl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ¬ 𝑟 ≤ 0 ) |
| 17 | simpllr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) | |
| 18 | 17 | breq2d | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ 𝑟 ≤ 0 ) ) |
| 19 | 3 | adantr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 20 | simpl2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑆 ⊆ 𝑋 ) | |
| 21 | 20 | ad2antrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝑆 ⊆ 𝑋 ) |
| 22 | simpl3 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ 𝑋 ) | |
| 23 | 22 | ad2antrr | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝐴 ∈ 𝑋 ) |
| 24 | rpxr | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ* ) | |
| 25 | 24 | ad2antrl | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → 𝑟 ∈ ℝ* ) |
| 26 | 1 | metdsge | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ ℝ* ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
| 27 | 19 21 23 25 26 | syl31anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
| 28 | 18 27 | bitr3d | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ 0 ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ) ) |
| 29 | incom | ⊢ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) | |
| 30 | 29 | eqeq1i | ⊢ ( ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ) = ∅ ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) = ∅ ) |
| 31 | 28 30 | bitrdi | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑟 ≤ 0 ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) = ∅ ) ) |
| 32 | 31 | necon3bbid | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ¬ 𝑟 ≤ 0 ↔ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 33 | 16 32 | mpbid | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) |
| 34 | ssn0 | ⊢ ( ( ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ⊆ ( 𝑧 ∩ 𝑆 ) ∧ ( ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ∩ 𝑆 ) ≠ ∅ ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) | |
| 35 | 9 33 34 | syl2anc | ⊢ ( ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) ∧ ( 𝑟 ∈ ℝ+ ∧ ( 𝐴 ( ball ‘ 𝐷 ) 𝑟 ) ⊆ 𝑧 ) ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
| 36 | 7 35 | rexlimddv | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ ( 𝑧 ∈ 𝐽 ∧ 𝐴 ∈ 𝑧 ) ) → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) |
| 37 | 36 | expr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) ∧ 𝑧 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 38 | 37 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) |
| 39 | 2 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 42 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 43 | 41 42 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐽 ∈ Top ) |
| 44 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 45 | 41 44 | syl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑋 = ∪ 𝐽 ) |
| 46 | 20 45 | sseqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 47 | 22 45 | eleqtrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ∪ 𝐽 ) |
| 48 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 49 | 48 | elcls | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝐴 ∈ ∪ 𝐽 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 50 | 43 46 47 49 | syl3anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → ( 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ( 𝑧 ∩ 𝑆 ) ≠ ∅ ) ) ) |
| 51 | 38 50 | mpbird | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) = 0 ) → 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 52 | incom | ⊢ ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 53 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 54 | 53 | ffvelcdmda | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 55 | 54 | 3impa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 56 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) | |
| 57 | 55 56 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 58 | 57 | xrleidd | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 59 | 1 | metdsge | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
| 60 | 57 59 | mpdan | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) ) |
| 61 | 58 60 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑆 ∩ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) = ∅ ) |
| 62 | 52 61 | eqtrid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ ) |
| 63 | 62 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ ) |
| 64 | 40 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 65 | 64 42 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐽 ∈ Top ) |
| 66 | simpll2 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 67 | 64 44 | syl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑋 = ∪ 𝐽 ) |
| 68 | 66 67 | sseqtrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 69 | simplr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | |
| 70 | simpll1 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 71 | simpll3 | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ 𝑋 ) | |
| 72 | 57 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 73 | 2 | blopn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ) |
| 74 | 70 71 72 73 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ) |
| 75 | simpr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 0 < ( 𝐹 ‘ 𝐴 ) ) | |
| 76 | xblcntr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) | |
| 77 | 70 71 72 75 76 | syl112anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) |
| 78 | 48 | clsndisj | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∈ 𝐽 ∧ 𝐴 ∈ ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) |
| 79 | 65 68 69 74 77 78 | syl32anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ 0 < ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) |
| 80 | 79 | ex | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 0 < ( 𝐹 ‘ 𝐴 ) → ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) ≠ ∅ ) ) |
| 81 | 80 | necon2bd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ( ( 𝐴 ( ball ‘ 𝐷 ) ( 𝐹 ‘ 𝐴 ) ) ∩ 𝑆 ) = ∅ → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) ) |
| 82 | 63 81 | mpd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ¬ 0 < ( 𝐹 ‘ 𝐴 ) ) |
| 83 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 84 | 83 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 85 | 55 84 | syl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 86 | 0xr | ⊢ 0 ∈ ℝ* | |
| 87 | xrleloe | ⊢ ( ( 0 ∈ ℝ* ∧ ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) | |
| 88 | 86 57 87 | sylancr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ↔ ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) ) |
| 89 | 85 88 | mpbid | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 90 | 89 | adantr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 0 < ( 𝐹 ‘ 𝐴 ) ∨ 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 91 | 90 | ord | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( ¬ 0 < ( 𝐹 ‘ 𝐴 ) → 0 = ( 𝐹 ‘ 𝐴 ) ) ) |
| 92 | 82 91 | mpd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 0 = ( 𝐹 ‘ 𝐴 ) ) |
| 93 | 92 | eqcomd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝐹 ‘ 𝐴 ) = 0 ) |
| 94 | 51 93 | impbida | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝐴 ) = 0 ↔ 𝐴 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |