This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metdscn . (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metdscn.c | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | ||
| metdscn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | ||
| metdscnlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | ||
| metdscnlem.2 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | ||
| metdscnlem.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| metdscnlem.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | ||
| metdscnlem.5 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| metdscnlem.6 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝐵 ) < 𝑅 ) | ||
| Assertion | metdscnlem | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) < 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metdscn.c | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | |
| 4 | metdscn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | |
| 5 | metdscnlem.1 | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 6 | metdscnlem.2 | ⊢ ( 𝜑 → 𝑆 ⊆ 𝑋 ) | |
| 7 | metdscnlem.3 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 8 | metdscnlem.4 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑋 ) | |
| 9 | metdscnlem.5 | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 10 | metdscnlem.6 | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝐵 ) < 𝑅 ) | |
| 11 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 12 | 5 6 11 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 13 | 12 7 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 14 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ) |
| 16 | 12 8 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 17 | eliccxr | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) |
| 19 | 18 | xnegcld | ⊢ ( 𝜑 → -𝑒 ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ) |
| 20 | 15 19 | xaddcld | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) ∈ ℝ* ) |
| 21 | xmetcl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) | |
| 22 | 5 7 8 21 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) |
| 23 | 9 | rpxrd | ⊢ ( 𝜑 → 𝑅 ∈ ℝ* ) |
| 24 | 1 | metdstri | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐹 ‘ 𝐵 ) ) ) |
| 25 | 5 6 7 8 24 | syl22anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐹 ‘ 𝐵 ) ) ) |
| 26 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐴 ) ) ) | |
| 27 | 26 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 28 | 13 27 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝐴 ) ) |
| 29 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 30 | 29 | simprbi | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝐹 ‘ 𝐵 ) ) |
| 31 | 16 30 | syl | ⊢ ( 𝜑 → 0 ≤ ( 𝐹 ‘ 𝐵 ) ) |
| 32 | ge0nemnf | ⊢ ( ( ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝐵 ) ) → ( 𝐹 ‘ 𝐵 ) ≠ -∞ ) | |
| 33 | 18 31 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐵 ) ≠ -∞ ) |
| 34 | xmetge0 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) | |
| 35 | 5 7 8 34 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 36 | xlesubadd | ⊢ ( ( ( ( 𝐹 ‘ 𝐴 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝐵 ) ∈ ℝ* ∧ ( 𝐴 𝐷 𝐵 ) ∈ ℝ* ) ∧ ( 0 ≤ ( 𝐹 ‘ 𝐴 ) ∧ ( 𝐹 ‘ 𝐵 ) ≠ -∞ ∧ 0 ≤ ( 𝐴 𝐷 𝐵 ) ) ) → ( ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐹 ‘ 𝐵 ) ) ) ) | |
| 37 | 15 18 22 28 33 35 36 | syl33anc | ⊢ ( 𝜑 → ( ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ↔ ( 𝐹 ‘ 𝐴 ) ≤ ( ( 𝐴 𝐷 𝐵 ) +𝑒 ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 38 | 25 37 | mpbird | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) ≤ ( 𝐴 𝐷 𝐵 ) ) |
| 39 | 20 22 23 38 10 | xrlelttrd | ⊢ ( 𝜑 → ( ( 𝐹 ‘ 𝐴 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝐵 ) ) < 𝑅 ) |