This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance from a point to a set is zero iff the point is in the closure set. (Contributed by Mario Carneiro, 14-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| metdscn.j | |- J = ( MetOpen ` D ) |
||
| Assertion | metdseq0 | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) = 0 <-> A e. ( ( cls ` J ) ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | metdscn.j | |- J = ( MetOpen ` D ) |
|
| 3 | simpll1 | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> D e. ( *Met ` X ) ) |
|
| 4 | simprl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> z e. J ) |
|
| 5 | simprr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> A e. z ) |
|
| 6 | 2 | mopni2 | |- ( ( D e. ( *Met ` X ) /\ z e. J /\ A e. z ) -> E. r e. RR+ ( A ( ball ` D ) r ) C_ z ) |
| 7 | 3 4 5 6 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> E. r e. RR+ ( A ( ball ` D ) r ) C_ z ) |
| 8 | simprr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( A ( ball ` D ) r ) C_ z ) |
|
| 9 | 8 | ssrind | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( ( A ( ball ` D ) r ) i^i S ) C_ ( z i^i S ) ) |
| 10 | rpgt0 | |- ( r e. RR+ -> 0 < r ) |
|
| 11 | 0re | |- 0 e. RR |
|
| 12 | rpre | |- ( r e. RR+ -> r e. RR ) |
|
| 13 | ltnle | |- ( ( 0 e. RR /\ r e. RR ) -> ( 0 < r <-> -. r <_ 0 ) ) |
|
| 14 | 11 12 13 | sylancr | |- ( r e. RR+ -> ( 0 < r <-> -. r <_ 0 ) ) |
| 15 | 10 14 | mpbid | |- ( r e. RR+ -> -. r <_ 0 ) |
| 16 | 15 | ad2antrl | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> -. r <_ 0 ) |
| 17 | simpllr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( F ` A ) = 0 ) |
|
| 18 | 17 | breq2d | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ ( F ` A ) <-> r <_ 0 ) ) |
| 19 | 3 | adantr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> D e. ( *Met ` X ) ) |
| 20 | simpl2 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> S C_ X ) |
|
| 21 | 20 | ad2antrr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> S C_ X ) |
| 22 | simpl3 | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. X ) |
|
| 23 | 22 | ad2antrr | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> A e. X ) |
| 24 | rpxr | |- ( r e. RR+ -> r e. RR* ) |
|
| 25 | 24 | ad2antrl | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> r e. RR* ) |
| 26 | 1 | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ r e. RR* ) -> ( r <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) |
| 27 | 19 21 23 25 26 | syl31anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) |
| 28 | 18 27 | bitr3d | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ 0 <-> ( S i^i ( A ( ball ` D ) r ) ) = (/) ) ) |
| 29 | incom | |- ( S i^i ( A ( ball ` D ) r ) ) = ( ( A ( ball ` D ) r ) i^i S ) |
|
| 30 | 29 | eqeq1i | |- ( ( S i^i ( A ( ball ` D ) r ) ) = (/) <-> ( ( A ( ball ` D ) r ) i^i S ) = (/) ) |
| 31 | 28 30 | bitrdi | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( r <_ 0 <-> ( ( A ( ball ` D ) r ) i^i S ) = (/) ) ) |
| 32 | 31 | necon3bbid | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( -. r <_ 0 <-> ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) ) |
| 33 | 16 32 | mpbid | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) |
| 34 | ssn0 | |- ( ( ( ( A ( ball ` D ) r ) i^i S ) C_ ( z i^i S ) /\ ( ( A ( ball ` D ) r ) i^i S ) =/= (/) ) -> ( z i^i S ) =/= (/) ) |
|
| 35 | 9 33 34 | syl2anc | |- ( ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) /\ ( r e. RR+ /\ ( A ( ball ` D ) r ) C_ z ) ) -> ( z i^i S ) =/= (/) ) |
| 36 | 7 35 | rexlimddv | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ ( z e. J /\ A e. z ) ) -> ( z i^i S ) =/= (/) ) |
| 37 | 36 | expr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) /\ z e. J ) -> ( A e. z -> ( z i^i S ) =/= (/) ) ) |
| 38 | 37 | ralrimiva | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) |
| 39 | 2 | mopntopon | |- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> J e. ( TopOn ` X ) ) |
| 41 | 40 | adantr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> J e. ( TopOn ` X ) ) |
| 42 | topontop | |- ( J e. ( TopOn ` X ) -> J e. Top ) |
|
| 43 | 41 42 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> J e. Top ) |
| 44 | toponuni | |- ( J e. ( TopOn ` X ) -> X = U. J ) |
|
| 45 | 41 44 | syl | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> X = U. J ) |
| 46 | 20 45 | sseqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> S C_ U. J ) |
| 47 | 22 45 | eleqtrd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. U. J ) |
| 48 | eqid | |- U. J = U. J |
|
| 49 | 48 | elcls | |- ( ( J e. Top /\ S C_ U. J /\ A e. U. J ) -> ( A e. ( ( cls ` J ) ` S ) <-> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) ) |
| 50 | 43 46 47 49 | syl3anc | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> ( A e. ( ( cls ` J ) ` S ) <-> A. z e. J ( A e. z -> ( z i^i S ) =/= (/) ) ) ) |
| 51 | 38 50 | mpbird | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) = 0 ) -> A e. ( ( cls ` J ) ` S ) ) |
| 52 | incom | |- ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) |
|
| 53 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 54 | 53 | ffvelcdmda | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ A e. X ) -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 55 | 54 | 3impa | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 56 | eliccxr | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) |
|
| 57 | 55 56 | syl | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) e. RR* ) |
| 58 | 57 | xrleidd | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( F ` A ) <_ ( F ` A ) ) |
| 59 | 1 | metdsge | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ ( F ` A ) e. RR* ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) |
| 60 | 57 59 | mpdan | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) <_ ( F ` A ) <-> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) ) |
| 61 | 58 60 | mpbid | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( S i^i ( A ( ball ` D ) ( F ` A ) ) ) = (/) ) |
| 62 | 52 61 | eqtrid | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) ) |
| 63 | 62 | adantr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) ) |
| 64 | 40 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> J e. ( TopOn ` X ) ) |
| 65 | 64 42 | syl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> J e. Top ) |
| 66 | simpll2 | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> S C_ X ) |
|
| 67 | 64 44 | syl | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> X = U. J ) |
| 68 | 66 67 | sseqtrd | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> S C_ U. J ) |
| 69 | simplr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. ( ( cls ` J ) ` S ) ) |
|
| 70 | simpll1 | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> D e. ( *Met ` X ) ) |
|
| 71 | simpll3 | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. X ) |
|
| 72 | 57 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( F ` A ) e. RR* ) |
| 73 | 2 | blopn | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ ( F ` A ) e. RR* ) -> ( A ( ball ` D ) ( F ` A ) ) e. J ) |
| 74 | 70 71 72 73 | syl3anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( A ( ball ` D ) ( F ` A ) ) e. J ) |
| 75 | simpr | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> 0 < ( F ` A ) ) |
|
| 76 | xblcntr | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ ( ( F ` A ) e. RR* /\ 0 < ( F ` A ) ) ) -> A e. ( A ( ball ` D ) ( F ` A ) ) ) |
|
| 77 | 70 71 72 75 76 | syl112anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> A e. ( A ( ball ` D ) ( F ` A ) ) ) |
| 78 | 48 | clsndisj | |- ( ( ( J e. Top /\ S C_ U. J /\ A e. ( ( cls ` J ) ` S ) ) /\ ( ( A ( ball ` D ) ( F ` A ) ) e. J /\ A e. ( A ( ball ` D ) ( F ` A ) ) ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) |
| 79 | 65 68 69 74 77 78 | syl32anc | |- ( ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) /\ 0 < ( F ` A ) ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) |
| 80 | 79 | ex | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( 0 < ( F ` A ) -> ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) =/= (/) ) ) |
| 81 | 80 | necon2bd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( ( ( A ( ball ` D ) ( F ` A ) ) i^i S ) = (/) -> -. 0 < ( F ` A ) ) ) |
| 82 | 63 81 | mpd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> -. 0 < ( F ` A ) ) |
| 83 | elxrge0 | |- ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) |
|
| 84 | 83 | simprbi | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) |
| 85 | 55 84 | syl | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> 0 <_ ( F ` A ) ) |
| 86 | 0xr | |- 0 e. RR* |
|
| 87 | xrleloe | |- ( ( 0 e. RR* /\ ( F ` A ) e. RR* ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) |
|
| 88 | 86 57 87 | sylancr | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( 0 <_ ( F ` A ) <-> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) ) |
| 89 | 85 88 | mpbid | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) |
| 90 | 89 | adantr | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( 0 < ( F ` A ) \/ 0 = ( F ` A ) ) ) |
| 91 | 90 | ord | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( -. 0 < ( F ` A ) -> 0 = ( F ` A ) ) ) |
| 92 | 82 91 | mpd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> 0 = ( F ` A ) ) |
| 93 | 92 | eqcomd | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) /\ A e. ( ( cls ` J ) ` S ) ) -> ( F ` A ) = 0 ) |
| 94 | 51 93 | impbida | |- ( ( D e. ( *Met ` X ) /\ S C_ X /\ A e. X ) -> ( ( F ` A ) = 0 <-> A e. ( ( cls ` J ) ` S ) ) ) |