This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetdiag . Previously part of proof for mdet1 . (Contributed by SO, 10-Jul-2018) (Revised by AV, 17-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| mdetdiag.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | ||
| mdetdiag.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| mdetdiaglem.g | ⊢ 𝐻 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | ||
| mdetdiaglem.z | ⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) | ||
| mdetdiaglem.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | ||
| mdetdiaglem.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| Assertion | mdetdiaglem | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | mdetdiag.g | ⊢ 𝐺 = ( mulGrp ‘ 𝑅 ) | |
| 5 | mdetdiag.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 6 | mdetdiaglem.g | ⊢ 𝐻 = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 7 | mdetdiaglem.z | ⊢ 𝑍 = ( ℤRHom ‘ 𝑅 ) | |
| 8 | mdetdiaglem.s | ⊢ 𝑆 = ( pmSgn ‘ 𝑁 ) | |
| 9 | mdetdiaglem.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 10 | 7 | a1i | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → 𝑍 = ( ℤRHom ‘ 𝑅 ) ) |
| 11 | 8 | a1i | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → 𝑆 = ( pmSgn ‘ 𝑁 ) ) |
| 12 | 10 11 | coeq12d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( 𝑍 ∘ 𝑆 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ) |
| 13 | 12 | fveq1d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) ) |
| 14 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 15 | 14 6 | symgbasf1o | ⊢ ( 𝑃 ∈ 𝐻 → 𝑃 : 𝑁 –1-1-onto→ 𝑁 ) |
| 16 | f1ofn | ⊢ ( 𝑃 : 𝑁 –1-1-onto→ 𝑁 → 𝑃 Fn 𝑁 ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑃 ∈ 𝐻 → 𝑃 Fn 𝑁 ) |
| 18 | fnnfpeq0 | ⊢ ( 𝑃 Fn 𝑁 → ( dom ( 𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑃 ∈ 𝐻 → ( dom ( 𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁 ) ) ) |
| 20 | 19 | adantl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( dom ( 𝑃 ∖ I ) = ∅ ↔ 𝑃 = ( I ↾ 𝑁 ) ) ) |
| 21 | 20 | bicomd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑃 = ( I ↾ 𝑁 ) ↔ dom ( 𝑃 ∖ I ) = ∅ ) ) |
| 22 | 21 | necon3bid | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑃 ≠ ( I ↾ 𝑁 ) ↔ dom ( 𝑃 ∖ I ) ≠ ∅ ) ) |
| 23 | n0 | ⊢ ( dom ( 𝑃 ∖ I ) ≠ ∅ ↔ ∃ 𝑠 𝑠 ∈ dom ( 𝑃 ∖ I ) ) | |
| 24 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 25 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 26 | 4 25 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 27 | 4 | crngmgp | ⊢ ( 𝑅 ∈ CRing → 𝐺 ∈ CMnd ) |
| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ CMnd ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝐺 ∈ CMnd ) |
| 30 | simpll2 | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑁 ∈ Fin ) | |
| 31 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 32 | 2 31 3 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
| 34 | elmapi | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 36 | 4 31 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝐺 ) |
| 37 | 36 | eqcomi | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝑅 ) |
| 38 | 37 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ 𝐺 ) = ( Base ‘ 𝑅 ) ) |
| 39 | 38 | feq3d | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝐺 ) ↔ 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) ) |
| 40 | 35 39 | mpbird | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 41 | 40 | ad3antrrr | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 42 | 14 6 | symgbasf | ⊢ ( 𝑃 ∈ 𝐻 → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 43 | 42 | ad2antrl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 44 | 43 | ffvelcdmda | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
| 45 | simpr | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) ∧ 𝑘 ∈ 𝑁 ) → 𝑘 ∈ 𝑁 ) | |
| 46 | 41 44 45 | fovcdmd | ⊢ ( ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) ∧ 𝑘 ∈ 𝑁 ) → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 47 | disjdif | ⊢ ( { 𝑠 } ∩ ( 𝑁 ∖ { 𝑠 } ) ) = ∅ | |
| 48 | 47 | a1i | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( { 𝑠 } ∩ ( 𝑁 ∖ { 𝑠 } ) ) = ∅ ) |
| 49 | difss | ⊢ ( 𝑃 ∖ I ) ⊆ 𝑃 | |
| 50 | dmss | ⊢ ( ( 𝑃 ∖ I ) ⊆ 𝑃 → dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 ) | |
| 51 | 49 50 | ax-mp | ⊢ dom ( 𝑃 ∖ I ) ⊆ dom 𝑃 |
| 52 | 42 | adantl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 53 | 51 52 | fssdm | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → dom ( 𝑃 ∖ I ) ⊆ 𝑁 ) |
| 54 | 53 | sseld | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑠 ∈ dom ( 𝑃 ∖ I ) → 𝑠 ∈ 𝑁 ) ) |
| 55 | 54 | impr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑠 ∈ 𝑁 ) |
| 56 | 55 | snssd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → { 𝑠 } ⊆ 𝑁 ) |
| 57 | undif | ⊢ ( { 𝑠 } ⊆ 𝑁 ↔ ( { 𝑠 } ∪ ( 𝑁 ∖ { 𝑠 } ) ) = 𝑁 ) | |
| 58 | 56 57 | sylib | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( { 𝑠 } ∪ ( 𝑁 ∖ { 𝑠 } ) ) = 𝑁 ) |
| 59 | 58 | eqcomd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑁 = ( { 𝑠 } ∪ ( 𝑁 ∖ { 𝑠 } ) ) ) |
| 60 | 24 26 29 30 46 48 59 | gsummptfidmsplit | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑠 } ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) ) |
| 61 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 62 | 61 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ Ring ) |
| 63 | 4 | ringmgp | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Mnd ) |
| 64 | 62 63 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐺 ∈ Mnd ) |
| 65 | 64 | 3adant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝐺 ∈ Mnd ) |
| 66 | 65 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝐺 ∈ Mnd ) |
| 67 | vex | ⊢ 𝑠 ∈ V | |
| 68 | 67 | a1i | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑠 ∈ V ) |
| 69 | 35 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 70 | 43 55 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝑃 ‘ 𝑠 ) ∈ 𝑁 ) |
| 71 | 69 70 55 | fovcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ∈ ( Base ‘ 𝑅 ) ) |
| 72 | fveq2 | ⊢ ( 𝑘 = 𝑠 → ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ 𝑠 ) ) | |
| 73 | id | ⊢ ( 𝑘 = 𝑠 → 𝑘 = 𝑠 ) | |
| 74 | 72 73 | oveq12d | ⊢ ( 𝑘 = 𝑠 → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) = ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ) |
| 75 | 36 74 | gsumsn | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑠 ∈ V ∧ ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑠 } ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ) |
| 76 | 66 68 71 75 | syl3anc | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑠 } ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ) |
| 77 | simprr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑠 ∈ dom ( 𝑃 ∖ I ) ) | |
| 78 | 17 | ad2antrl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑃 Fn 𝑁 ) |
| 79 | fnelnfp | ⊢ ( ( 𝑃 Fn 𝑁 ∧ 𝑠 ∈ 𝑁 ) → ( 𝑠 ∈ dom ( 𝑃 ∖ I ) ↔ ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 ) ) | |
| 80 | 78 55 79 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝑠 ∈ dom ( 𝑃 ∖ I ) ↔ ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 ) ) |
| 81 | 77 80 | mpbid | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 ) |
| 82 | 42 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 83 | 42 | adantl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 84 | 51 83 | fssdm | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → dom ( 𝑃 ∖ I ) ⊆ 𝑁 ) |
| 85 | 84 | sseld | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑠 ∈ dom ( 𝑃 ∖ I ) → 𝑠 ∈ 𝑁 ) ) |
| 86 | 85 | impr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑠 ∈ 𝑁 ) |
| 87 | 82 86 | ffvelcdmd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝑃 ‘ 𝑠 ) ∈ 𝑁 ) |
| 88 | neeq1 | ⊢ ( 𝑖 = ( 𝑃 ‘ 𝑠 ) → ( 𝑖 ≠ 𝑗 ↔ ( 𝑃 ‘ 𝑠 ) ≠ 𝑗 ) ) | |
| 89 | oveq1 | ⊢ ( 𝑖 = ( 𝑃 ‘ 𝑠 ) → ( 𝑖 𝑀 𝑗 ) = ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) ) | |
| 90 | 89 | eqeq1d | ⊢ ( 𝑖 = ( 𝑃 ‘ 𝑠 ) → ( ( 𝑖 𝑀 𝑗 ) = 0 ↔ ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) = 0 ) ) |
| 91 | 88 90 | imbi12d | ⊢ ( 𝑖 = ( 𝑃 ‘ 𝑠 ) → ( ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ↔ ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑗 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) = 0 ) ) ) |
| 92 | neeq2 | ⊢ ( 𝑗 = 𝑠 → ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑗 ↔ ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 ) ) | |
| 93 | oveq2 | ⊢ ( 𝑗 = 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) = ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) ) | |
| 94 | 93 | eqeq1d | ⊢ ( 𝑗 = 𝑠 → ( ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) = 0 ↔ ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) |
| 95 | 92 94 | imbi12d | ⊢ ( 𝑗 = 𝑠 → ( ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑗 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑗 ) = 0 ) ↔ ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) ) |
| 96 | 91 95 | rspc2v | ⊢ ( ( ( 𝑃 ‘ 𝑠 ) ∈ 𝑁 ∧ 𝑠 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) ) |
| 97 | 87 86 96 | syl2anc | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) → ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) ) |
| 98 | 97 | impancom | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) → ( ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) → ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) ) |
| 99 | 98 | imp | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( ( 𝑃 ‘ 𝑠 ) ≠ 𝑠 → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) ) |
| 100 | 81 99 | mpd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( ( 𝑃 ‘ 𝑠 ) 𝑀 𝑠 ) = 0 ) |
| 101 | 76 100 | eqtrd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑠 } ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) |
| 102 | 101 | oveq1d | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( ( 𝐺 Σg ( 𝑘 ∈ { 𝑠 } ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = ( 0 ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) ) |
| 103 | 61 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 104 | 103 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → 𝑅 ∈ Ring ) |
| 105 | 28 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → 𝐺 ∈ CMnd ) |
| 106 | simpl2 | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → 𝑁 ∈ Fin ) | |
| 107 | difss | ⊢ ( 𝑁 ∖ { 𝑠 } ) ⊆ 𝑁 | |
| 108 | ssfi | ⊢ ( ( 𝑁 ∈ Fin ∧ ( 𝑁 ∖ { 𝑠 } ) ⊆ 𝑁 ) → ( 𝑁 ∖ { 𝑠 } ) ∈ Fin ) | |
| 109 | 106 107 108 | sylancl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑁 ∖ { 𝑠 } ) ∈ Fin ) |
| 110 | 35 | ad2antrr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ) → 𝑀 : ( 𝑁 × 𝑁 ) ⟶ ( Base ‘ 𝑅 ) ) |
| 111 | 83 | adantr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ) → 𝑃 : 𝑁 ⟶ 𝑁 ) |
| 112 | eldifi | ⊢ ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) → 𝑘 ∈ 𝑁 ) | |
| 113 | 112 | adantl | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ) → 𝑘 ∈ 𝑁 ) |
| 114 | 111 113 | ffvelcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ) → ( 𝑃 ‘ 𝑘 ) ∈ 𝑁 ) |
| 115 | 110 114 113 | fovcdmd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) ∧ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ) → ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 116 | 115 | ralrimiva | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → ∀ 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 117 | 36 105 109 116 | gsummptcl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 118 | 117 | ad2ant2r | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 119 | 31 25 5 | ringlz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = 0 ) |
| 120 | 104 118 119 | syl2anc | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 0 ( .r ‘ 𝑅 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝑁 ∖ { 𝑠 } ) ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = 0 ) |
| 121 | 60 102 120 | 3eqtrd | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑠 ∈ dom ( 𝑃 ∖ I ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) |
| 122 | 121 | expr | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑠 ∈ dom ( 𝑃 ∖ I ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) ) |
| 123 | 122 | exlimdv | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( ∃ 𝑠 𝑠 ∈ dom ( 𝑃 ∖ I ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) ) |
| 124 | 23 123 | biimtrid | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( dom ( 𝑃 ∖ I ) ≠ ∅ → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) ) |
| 125 | 22 124 | sylbid | ⊢ ( ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) ∧ 𝑃 ∈ 𝐻 ) → ( 𝑃 ≠ ( I ↾ 𝑁 ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) ) |
| 126 | 125 | expimpd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ) → ( ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) ) |
| 127 | 126 | 3impia | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) = 0 ) |
| 128 | 13 127 | oveq12d | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) · 0 ) ) |
| 129 | 3simpa | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ) | |
| 130 | simpl | ⊢ ( ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) → 𝑃 ∈ 𝐻 ) | |
| 131 | 61 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑃 ∈ 𝐻 ) → 𝑅 ∈ Ring ) |
| 132 | zrhpsgnmhm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) | |
| 133 | 61 132 | sylan | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) ) |
| 134 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 135 | 6 134 | mhmf | ⊢ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ∈ ( ( SymGrp ‘ 𝑁 ) MndHom ( mulGrp ‘ 𝑅 ) ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : 𝐻 ⟶ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 136 | 133 135 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) : 𝐻 ⟶ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 137 | 136 | ffvelcdmda | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑃 ∈ 𝐻 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 138 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 139 | 138 31 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 140 | 139 | eqcomi | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ 𝑅 ) |
| 141 | 140 9 5 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) · 0 ) = 0 ) |
| 142 | 131 137 141 | syl2anc | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ 𝑃 ∈ 𝐻 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) · 0 ) = 0 ) |
| 143 | 129 130 142 | syl2an | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) · 0 ) = 0 ) |
| 144 | 143 | 3adant2 | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑃 ) · 0 ) = 0 ) |
| 145 | 128 144 | eqtrd | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 ≠ 𝑗 → ( 𝑖 𝑀 𝑗 ) = 0 ) ∧ ( 𝑃 ∈ 𝐻 ∧ 𝑃 ≠ ( I ↾ 𝑁 ) ) ) → ( ( ( 𝑍 ∘ 𝑆 ) ‘ 𝑃 ) · ( 𝐺 Σg ( 𝑘 ∈ 𝑁 ↦ ( ( 𝑃 ‘ 𝑘 ) 𝑀 𝑘 ) ) ) ) = 0 ) |