This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mdetdiag . Previously part of proof for mdet1 . (Contributed by SO, 10-Jul-2018) (Revised by AV, 17-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | |- D = ( N maDet R ) |
|
| mdetdiag.a | |- A = ( N Mat R ) |
||
| mdetdiag.b | |- B = ( Base ` A ) |
||
| mdetdiag.g | |- G = ( mulGrp ` R ) |
||
| mdetdiag.0 | |- .0. = ( 0g ` R ) |
||
| mdetdiaglem.g | |- H = ( Base ` ( SymGrp ` N ) ) |
||
| mdetdiaglem.z | |- Z = ( ZRHom ` R ) |
||
| mdetdiaglem.s | |- S = ( pmSgn ` N ) |
||
| mdetdiaglem.t | |- .x. = ( .r ` R ) |
||
| Assertion | mdetdiaglem | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( ( Z o. S ) ` P ) .x. ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | |- D = ( N maDet R ) |
|
| 2 | mdetdiag.a | |- A = ( N Mat R ) |
|
| 3 | mdetdiag.b | |- B = ( Base ` A ) |
|
| 4 | mdetdiag.g | |- G = ( mulGrp ` R ) |
|
| 5 | mdetdiag.0 | |- .0. = ( 0g ` R ) |
|
| 6 | mdetdiaglem.g | |- H = ( Base ` ( SymGrp ` N ) ) |
|
| 7 | mdetdiaglem.z | |- Z = ( ZRHom ` R ) |
|
| 8 | mdetdiaglem.s | |- S = ( pmSgn ` N ) |
|
| 9 | mdetdiaglem.t | |- .x. = ( .r ` R ) |
|
| 10 | 7 | a1i | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> Z = ( ZRHom ` R ) ) |
| 11 | 8 | a1i | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> S = ( pmSgn ` N ) ) |
| 12 | 10 11 | coeq12d | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( Z o. S ) = ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ) |
| 13 | 12 | fveq1d | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( Z o. S ) ` P ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) ) |
| 14 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 15 | 14 6 | symgbasf1o | |- ( P e. H -> P : N -1-1-onto-> N ) |
| 16 | f1ofn | |- ( P : N -1-1-onto-> N -> P Fn N ) |
|
| 17 | 15 16 | syl | |- ( P e. H -> P Fn N ) |
| 18 | fnnfpeq0 | |- ( P Fn N -> ( dom ( P \ _I ) = (/) <-> P = ( _I |` N ) ) ) |
|
| 19 | 17 18 | syl | |- ( P e. H -> ( dom ( P \ _I ) = (/) <-> P = ( _I |` N ) ) ) |
| 20 | 19 | adantl | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( dom ( P \ _I ) = (/) <-> P = ( _I |` N ) ) ) |
| 21 | 20 | bicomd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( P = ( _I |` N ) <-> dom ( P \ _I ) = (/) ) ) |
| 22 | 21 | necon3bid | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( P =/= ( _I |` N ) <-> dom ( P \ _I ) =/= (/) ) ) |
| 23 | n0 | |- ( dom ( P \ _I ) =/= (/) <-> E. s s e. dom ( P \ _I ) ) |
|
| 24 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 25 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 26 | 4 25 | mgpplusg | |- ( .r ` R ) = ( +g ` G ) |
| 27 | 4 | crngmgp | |- ( R e. CRing -> G e. CMnd ) |
| 28 | 27 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> G e. CMnd ) |
| 29 | 28 | ad2antrr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> G e. CMnd ) |
| 30 | simpll2 | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> N e. Fin ) |
|
| 31 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 32 | 2 31 3 | matbas2i | |- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 33 | 32 | 3ad2ant3 | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 34 | elmapi | |- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
|
| 35 | 33 34 | syl | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 36 | 4 31 | mgpbas | |- ( Base ` R ) = ( Base ` G ) |
| 37 | 36 | eqcomi | |- ( Base ` G ) = ( Base ` R ) |
| 38 | 37 | a1i | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> ( Base ` G ) = ( Base ` R ) ) |
| 39 | 38 | feq3d | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> ( M : ( N X. N ) --> ( Base ` G ) <-> M : ( N X. N ) --> ( Base ` R ) ) ) |
| 40 | 35 39 | mpbird | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> M : ( N X. N ) --> ( Base ` G ) ) |
| 41 | 40 | ad3antrrr | |- ( ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) /\ k e. N ) -> M : ( N X. N ) --> ( Base ` G ) ) |
| 42 | 14 6 | symgbasf | |- ( P e. H -> P : N --> N ) |
| 43 | 42 | ad2antrl | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> P : N --> N ) |
| 44 | 43 | ffvelcdmda | |- ( ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) /\ k e. N ) -> ( P ` k ) e. N ) |
| 45 | simpr | |- ( ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) /\ k e. N ) -> k e. N ) |
|
| 46 | 41 44 45 | fovcdmd | |- ( ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) /\ k e. N ) -> ( ( P ` k ) M k ) e. ( Base ` G ) ) |
| 47 | disjdif | |- ( { s } i^i ( N \ { s } ) ) = (/) |
|
| 48 | 47 | a1i | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( { s } i^i ( N \ { s } ) ) = (/) ) |
| 49 | difss | |- ( P \ _I ) C_ P |
|
| 50 | dmss | |- ( ( P \ _I ) C_ P -> dom ( P \ _I ) C_ dom P ) |
|
| 51 | 49 50 | ax-mp | |- dom ( P \ _I ) C_ dom P |
| 52 | 42 | adantl | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> P : N --> N ) |
| 53 | 51 52 | fssdm | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> dom ( P \ _I ) C_ N ) |
| 54 | 53 | sseld | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( s e. dom ( P \ _I ) -> s e. N ) ) |
| 55 | 54 | impr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> s e. N ) |
| 56 | 55 | snssd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> { s } C_ N ) |
| 57 | undif | |- ( { s } C_ N <-> ( { s } u. ( N \ { s } ) ) = N ) |
|
| 58 | 56 57 | sylib | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( { s } u. ( N \ { s } ) ) = N ) |
| 59 | 58 | eqcomd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> N = ( { s } u. ( N \ { s } ) ) ) |
| 60 | 24 26 29 30 46 48 59 | gsummptfidmsplit | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = ( ( G gsum ( k e. { s } |-> ( ( P ` k ) M k ) ) ) ( .r ` R ) ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) ) ) |
| 61 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 62 | 61 | adantr | |- ( ( R e. CRing /\ N e. Fin ) -> R e. Ring ) |
| 63 | 4 | ringmgp | |- ( R e. Ring -> G e. Mnd ) |
| 64 | 62 63 | syl | |- ( ( R e. CRing /\ N e. Fin ) -> G e. Mnd ) |
| 65 | 64 | 3adant3 | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> G e. Mnd ) |
| 66 | 65 | ad2antrr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> G e. Mnd ) |
| 67 | vex | |- s e. _V |
|
| 68 | 67 | a1i | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> s e. _V ) |
| 69 | 35 | ad2antrr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 70 | 43 55 | ffvelcdmd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( P ` s ) e. N ) |
| 71 | 69 70 55 | fovcdmd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( ( P ` s ) M s ) e. ( Base ` R ) ) |
| 72 | fveq2 | |- ( k = s -> ( P ` k ) = ( P ` s ) ) |
|
| 73 | id | |- ( k = s -> k = s ) |
|
| 74 | 72 73 | oveq12d | |- ( k = s -> ( ( P ` k ) M k ) = ( ( P ` s ) M s ) ) |
| 75 | 36 74 | gsumsn | |- ( ( G e. Mnd /\ s e. _V /\ ( ( P ` s ) M s ) e. ( Base ` R ) ) -> ( G gsum ( k e. { s } |-> ( ( P ` k ) M k ) ) ) = ( ( P ` s ) M s ) ) |
| 76 | 66 68 71 75 | syl3anc | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( G gsum ( k e. { s } |-> ( ( P ` k ) M k ) ) ) = ( ( P ` s ) M s ) ) |
| 77 | simprr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> s e. dom ( P \ _I ) ) |
|
| 78 | 17 | ad2antrl | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> P Fn N ) |
| 79 | fnelnfp | |- ( ( P Fn N /\ s e. N ) -> ( s e. dom ( P \ _I ) <-> ( P ` s ) =/= s ) ) |
|
| 80 | 78 55 79 | syl2anc | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( s e. dom ( P \ _I ) <-> ( P ` s ) =/= s ) ) |
| 81 | 77 80 | mpbid | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( P ` s ) =/= s ) |
| 82 | 42 | ad2antrl | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> P : N --> N ) |
| 83 | 42 | adantl | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> P : N --> N ) |
| 84 | 51 83 | fssdm | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> dom ( P \ _I ) C_ N ) |
| 85 | 84 | sseld | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> ( s e. dom ( P \ _I ) -> s e. N ) ) |
| 86 | 85 | impr | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> s e. N ) |
| 87 | 82 86 | ffvelcdmd | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( P ` s ) e. N ) |
| 88 | neeq1 | |- ( i = ( P ` s ) -> ( i =/= j <-> ( P ` s ) =/= j ) ) |
|
| 89 | oveq1 | |- ( i = ( P ` s ) -> ( i M j ) = ( ( P ` s ) M j ) ) |
|
| 90 | 89 | eqeq1d | |- ( i = ( P ` s ) -> ( ( i M j ) = .0. <-> ( ( P ` s ) M j ) = .0. ) ) |
| 91 | 88 90 | imbi12d | |- ( i = ( P ` s ) -> ( ( i =/= j -> ( i M j ) = .0. ) <-> ( ( P ` s ) =/= j -> ( ( P ` s ) M j ) = .0. ) ) ) |
| 92 | neeq2 | |- ( j = s -> ( ( P ` s ) =/= j <-> ( P ` s ) =/= s ) ) |
|
| 93 | oveq2 | |- ( j = s -> ( ( P ` s ) M j ) = ( ( P ` s ) M s ) ) |
|
| 94 | 93 | eqeq1d | |- ( j = s -> ( ( ( P ` s ) M j ) = .0. <-> ( ( P ` s ) M s ) = .0. ) ) |
| 95 | 92 94 | imbi12d | |- ( j = s -> ( ( ( P ` s ) =/= j -> ( ( P ` s ) M j ) = .0. ) <-> ( ( P ` s ) =/= s -> ( ( P ` s ) M s ) = .0. ) ) ) |
| 96 | 91 95 | rspc2v | |- ( ( ( P ` s ) e. N /\ s e. N ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) -> ( ( P ` s ) =/= s -> ( ( P ` s ) M s ) = .0. ) ) ) |
| 97 | 87 86 96 | syl2anc | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) -> ( ( P ` s ) =/= s -> ( ( P ` s ) M s ) = .0. ) ) ) |
| 98 | 97 | impancom | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( ( P e. H /\ s e. dom ( P \ _I ) ) -> ( ( P ` s ) =/= s -> ( ( P ` s ) M s ) = .0. ) ) ) |
| 99 | 98 | imp | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( ( P ` s ) =/= s -> ( ( P ` s ) M s ) = .0. ) ) |
| 100 | 81 99 | mpd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( ( P ` s ) M s ) = .0. ) |
| 101 | 76 100 | eqtrd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( G gsum ( k e. { s } |-> ( ( P ` k ) M k ) ) ) = .0. ) |
| 102 | 101 | oveq1d | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( ( G gsum ( k e. { s } |-> ( ( P ` k ) M k ) ) ) ( .r ` R ) ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) ) = ( .0. ( .r ` R ) ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) ) ) |
| 103 | 61 | 3ad2ant1 | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> R e. Ring ) |
| 104 | 103 | ad2antrr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> R e. Ring ) |
| 105 | 28 | adantr | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> G e. CMnd ) |
| 106 | simpl2 | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> N e. Fin ) |
|
| 107 | difss | |- ( N \ { s } ) C_ N |
|
| 108 | ssfi | |- ( ( N e. Fin /\ ( N \ { s } ) C_ N ) -> ( N \ { s } ) e. Fin ) |
|
| 109 | 106 107 108 | sylancl | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> ( N \ { s } ) e. Fin ) |
| 110 | 35 | ad2antrr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) /\ k e. ( N \ { s } ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 111 | 83 | adantr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) /\ k e. ( N \ { s } ) ) -> P : N --> N ) |
| 112 | eldifi | |- ( k e. ( N \ { s } ) -> k e. N ) |
|
| 113 | 112 | adantl | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) /\ k e. ( N \ { s } ) ) -> k e. N ) |
| 114 | 111 113 | ffvelcdmd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) /\ k e. ( N \ { s } ) ) -> ( P ` k ) e. N ) |
| 115 | 110 114 113 | fovcdmd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) /\ k e. ( N \ { s } ) ) -> ( ( P ` k ) M k ) e. ( Base ` R ) ) |
| 116 | 115 | ralrimiva | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> A. k e. ( N \ { s } ) ( ( P ` k ) M k ) e. ( Base ` R ) ) |
| 117 | 36 105 109 116 | gsummptcl | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ P e. H ) -> ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) e. ( Base ` R ) ) |
| 118 | 117 | ad2ant2r | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) e. ( Base ` R ) ) |
| 119 | 31 25 5 | ringlz | |- ( ( R e. Ring /\ ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) e. ( Base ` R ) ) -> ( .0. ( .r ` R ) ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) ) = .0. ) |
| 120 | 104 118 119 | syl2anc | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( .0. ( .r ` R ) ( G gsum ( k e. ( N \ { s } ) |-> ( ( P ` k ) M k ) ) ) ) = .0. ) |
| 121 | 60 102 120 | 3eqtrd | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ ( P e. H /\ s e. dom ( P \ _I ) ) ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) |
| 122 | 121 | expr | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( s e. dom ( P \ _I ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) ) |
| 123 | 122 | exlimdv | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( E. s s e. dom ( P \ _I ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) ) |
| 124 | 23 123 | biimtrid | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( dom ( P \ _I ) =/= (/) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) ) |
| 125 | 22 124 | sylbid | |- ( ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) /\ P e. H ) -> ( P =/= ( _I |` N ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) ) |
| 126 | 125 | expimpd | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) ) -> ( ( P e. H /\ P =/= ( _I |` N ) ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) ) |
| 127 | 126 | 3impia | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) = .0. ) |
| 128 | 13 127 | oveq12d | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( ( Z o. S ) ` P ) .x. ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) .x. .0. ) ) |
| 129 | 3simpa | |- ( ( R e. CRing /\ N e. Fin /\ M e. B ) -> ( R e. CRing /\ N e. Fin ) ) |
|
| 130 | simpl | |- ( ( P e. H /\ P =/= ( _I |` N ) ) -> P e. H ) |
|
| 131 | 61 | ad2antrr | |- ( ( ( R e. CRing /\ N e. Fin ) /\ P e. H ) -> R e. Ring ) |
| 132 | zrhpsgnmhm | |- ( ( R e. Ring /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
|
| 133 | 61 132 | sylan | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) ) |
| 134 | eqid | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
|
| 135 | 6 134 | mhmf | |- ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) e. ( ( SymGrp ` N ) MndHom ( mulGrp ` R ) ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : H --> ( Base ` ( mulGrp ` R ) ) ) |
| 136 | 133 135 | syl | |- ( ( R e. CRing /\ N e. Fin ) -> ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) : H --> ( Base ` ( mulGrp ` R ) ) ) |
| 137 | 136 | ffvelcdmda | |- ( ( ( R e. CRing /\ N e. Fin ) /\ P e. H ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) e. ( Base ` ( mulGrp ` R ) ) ) |
| 138 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 139 | 138 31 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 140 | 139 | eqcomi | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` R ) |
| 141 | 140 9 5 | ringrz | |- ( ( R e. Ring /\ ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) .x. .0. ) = .0. ) |
| 142 | 131 137 141 | syl2anc | |- ( ( ( R e. CRing /\ N e. Fin ) /\ P e. H ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) .x. .0. ) = .0. ) |
| 143 | 129 130 142 | syl2an | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) .x. .0. ) = .0. ) |
| 144 | 143 | 3adant2 | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` P ) .x. .0. ) = .0. ) |
| 145 | 128 144 | eqtrd | |- ( ( ( R e. CRing /\ N e. Fin /\ M e. B ) /\ A. i e. N A. j e. N ( i =/= j -> ( i M j ) = .0. ) /\ ( P e. H /\ P =/= ( _I |` N ) ) ) -> ( ( ( Z o. S ) ` P ) .x. ( G gsum ( k e. N |-> ( ( P ` k ) M k ) ) ) ) = .0. ) |