This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in Lang p. 513. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 25-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdet1.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdet1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdet1.n | ⊢ 𝐼 = ( 1r ‘ 𝐴 ) | ||
| mdet1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| Assertion | mdet1 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝐷 ‘ 𝐼 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdet1.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdet1.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdet1.n | ⊢ 𝐼 = ( 1r ‘ 𝐴 ) | |
| 4 | mdet1.o | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 5 | id | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ) | |
| 6 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 7 | 6 | anim1ci | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 8 | 2 | matring | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 10 | 9 3 | ringidcl | ⊢ ( 𝐴 ∈ Ring → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
| 11 | 7 8 10 | 3syl | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝐼 ∈ ( Base ‘ 𝐴 ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 13 | 12 4 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 14 | 6 13 | syl | ⊢ ( 𝑅 ∈ CRing → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 1 ∈ ( Base ‘ 𝑅 ) ) |
| 16 | 5 11 15 | jca32 | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝐼 ∈ ( Base ‘ 𝐴 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) ) |
| 17 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 18 | simplr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑁 ∈ Fin ) | |
| 19 | 6 | adantr | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → 𝑅 ∈ Ring ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑅 ∈ Ring ) |
| 21 | simprl | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑖 ∈ 𝑁 ) | |
| 22 | simprr | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → 𝑗 ∈ 𝑁 ) | |
| 23 | 2 4 17 18 20 21 22 3 | mat1ov | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ) ) → ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 24 | 23 | ralrimivva | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) ) |
| 25 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 26 | eqid | ⊢ ( .g ‘ ( mulGrp ‘ 𝑅 ) ) = ( .g ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 27 | 1 2 9 25 17 12 26 | mdetdiagid | ⊢ ( ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) ∧ ( 𝐼 ∈ ( Base ‘ 𝐴 ) ∧ 1 ∈ ( Base ‘ 𝑅 ) ) ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝐼 𝑗 ) = if ( 𝑖 = 𝑗 , 1 , ( 0g ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝐼 ) = ( ( ♯ ‘ 𝑁 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 1 ) ) ) |
| 28 | 16 24 27 | sylc | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝐷 ‘ 𝐼 ) = ( ( ♯ ‘ 𝑁 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 1 ) ) |
| 29 | ringsrg | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ SRing ) | |
| 30 | 6 29 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ SRing ) |
| 31 | hashcl | ⊢ ( 𝑁 ∈ Fin → ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) | |
| 32 | 25 26 4 | srg1expzeq1 | ⊢ ( ( 𝑅 ∈ SRing ∧ ( ♯ ‘ 𝑁 ) ∈ ℕ0 ) → ( ( ♯ ‘ 𝑁 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 1 ) = 1 ) |
| 33 | 30 31 32 | syl2an | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( ( ♯ ‘ 𝑁 ) ( .g ‘ ( mulGrp ‘ 𝑅 ) ) 1 ) = 1 ) |
| 34 | 28 33 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ) → ( 𝐷 ‘ 𝐼 ) = 1 ) |