This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummptfidmsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsummptfidmsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| gsummptfidmsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | ||
| gsummptfidmsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | ||
| gsummptfidmsplit.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) | ||
| gsummptfidmsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | ||
| gsummptfidmsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | ||
| Assertion | gsummptfidmsplit | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑌 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfidmsplit.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsummptfidmsplit.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | gsummptfidmsplit.g | ⊢ ( 𝜑 → 𝐺 ∈ CMnd ) | |
| 4 | gsummptfidmsplit.a | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 5 | gsummptfidmsplit.y | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝑌 ∈ 𝐵 ) | |
| 6 | gsummptfidmsplit.i | ⊢ ( 𝜑 → ( 𝐶 ∩ 𝐷 ) = ∅ ) | |
| 7 | gsummptfidmsplit.u | ⊢ ( 𝜑 → 𝐴 = ( 𝐶 ∪ 𝐷 ) ) | |
| 8 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) = ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) | |
| 10 | fvexd | ⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) | |
| 11 | 9 4 5 10 | fsuppmptdm | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 12 | 1 8 2 3 4 5 11 6 7 | gsumsplit2 | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ 𝐴 ↦ 𝑌 ) ) = ( ( 𝐺 Σg ( 𝑘 ∈ 𝐶 ↦ 𝑌 ) ) + ( 𝐺 Σg ( 𝑘 ∈ 𝐷 ↦ 𝑌 ) ) ) ) |