This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a sequence of measurable, real-valued functions is measurable. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 13-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfinf.1 | |- Z = ( ZZ>= ` M ) |
|
| mbfinf.2 | |- G = ( x e. A |-> inf ( ran ( n e. Z |-> B ) , RR , < ) ) |
||
| mbfinf.3 | |- ( ph -> M e. ZZ ) |
||
| mbfinf.4 | |- ( ( ph /\ n e. Z ) -> ( x e. A |-> B ) e. MblFn ) |
||
| mbfinf.5 | |- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> B e. RR ) |
||
| mbfinf.6 | |- ( ( ph /\ x e. A ) -> E. y e. RR A. n e. Z y <_ B ) |
||
| Assertion | mbfinf | |- ( ph -> G e. MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfinf.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | mbfinf.2 | |- G = ( x e. A |-> inf ( ran ( n e. Z |-> B ) , RR , < ) ) |
|
| 3 | mbfinf.3 | |- ( ph -> M e. ZZ ) |
|
| 4 | mbfinf.4 | |- ( ( ph /\ n e. Z ) -> ( x e. A |-> B ) e. MblFn ) |
|
| 5 | mbfinf.5 | |- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> B e. RR ) |
|
| 6 | mbfinf.6 | |- ( ( ph /\ x e. A ) -> E. y e. RR A. n e. Z y <_ B ) |
|
| 7 | 5 | anass1rs | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> B e. RR ) |
| 8 | 7 | fmpttd | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) : Z --> RR ) |
| 9 | 8 | frnd | |- ( ( ph /\ x e. A ) -> ran ( n e. Z |-> B ) C_ RR ) |
| 10 | uzid | |- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
|
| 11 | 3 10 | syl | |- ( ph -> M e. ( ZZ>= ` M ) ) |
| 12 | 11 1 | eleqtrrdi | |- ( ph -> M e. Z ) |
| 13 | 12 | adantr | |- ( ( ph /\ x e. A ) -> M e. Z ) |
| 14 | eqid | |- ( n e. Z |-> B ) = ( n e. Z |-> B ) |
|
| 15 | 14 7 | dmmptd | |- ( ( ph /\ x e. A ) -> dom ( n e. Z |-> B ) = Z ) |
| 16 | 13 15 | eleqtrrd | |- ( ( ph /\ x e. A ) -> M e. dom ( n e. Z |-> B ) ) |
| 17 | 16 | ne0d | |- ( ( ph /\ x e. A ) -> dom ( n e. Z |-> B ) =/= (/) ) |
| 18 | dm0rn0 | |- ( dom ( n e. Z |-> B ) = (/) <-> ran ( n e. Z |-> B ) = (/) ) |
|
| 19 | 18 | necon3bii | |- ( dom ( n e. Z |-> B ) =/= (/) <-> ran ( n e. Z |-> B ) =/= (/) ) |
| 20 | 17 19 | sylib | |- ( ( ph /\ x e. A ) -> ran ( n e. Z |-> B ) =/= (/) ) |
| 21 | 8 | ffnd | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> B ) Fn Z ) |
| 22 | breq2 | |- ( z = ( ( n e. Z |-> B ) ` m ) -> ( y <_ z <-> y <_ ( ( n e. Z |-> B ) ` m ) ) ) |
|
| 23 | 22 | ralrn | |- ( ( n e. Z |-> B ) Fn Z -> ( A. z e. ran ( n e. Z |-> B ) y <_ z <-> A. m e. Z y <_ ( ( n e. Z |-> B ) ` m ) ) ) |
| 24 | 21 23 | syl | |- ( ( ph /\ x e. A ) -> ( A. z e. ran ( n e. Z |-> B ) y <_ z <-> A. m e. Z y <_ ( ( n e. Z |-> B ) ` m ) ) ) |
| 25 | nfcv | |- F/_ n y |
|
| 26 | nfcv | |- F/_ n <_ |
|
| 27 | nffvmpt1 | |- F/_ n ( ( n e. Z |-> B ) ` m ) |
|
| 28 | 25 26 27 | nfbr | |- F/ n y <_ ( ( n e. Z |-> B ) ` m ) |
| 29 | nfv | |- F/ m y <_ ( ( n e. Z |-> B ) ` n ) |
|
| 30 | fveq2 | |- ( m = n -> ( ( n e. Z |-> B ) ` m ) = ( ( n e. Z |-> B ) ` n ) ) |
|
| 31 | 30 | breq2d | |- ( m = n -> ( y <_ ( ( n e. Z |-> B ) ` m ) <-> y <_ ( ( n e. Z |-> B ) ` n ) ) ) |
| 32 | 28 29 31 | cbvralw | |- ( A. m e. Z y <_ ( ( n e. Z |-> B ) ` m ) <-> A. n e. Z y <_ ( ( n e. Z |-> B ) ` n ) ) |
| 33 | simpr | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> n e. Z ) |
|
| 34 | 14 | fvmpt2 | |- ( ( n e. Z /\ B e. RR ) -> ( ( n e. Z |-> B ) ` n ) = B ) |
| 35 | 33 7 34 | syl2anc | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> ( ( n e. Z |-> B ) ` n ) = B ) |
| 36 | 35 | breq2d | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> ( y <_ ( ( n e. Z |-> B ) ` n ) <-> y <_ B ) ) |
| 37 | 36 | ralbidva | |- ( ( ph /\ x e. A ) -> ( A. n e. Z y <_ ( ( n e. Z |-> B ) ` n ) <-> A. n e. Z y <_ B ) ) |
| 38 | 32 37 | bitrid | |- ( ( ph /\ x e. A ) -> ( A. m e. Z y <_ ( ( n e. Z |-> B ) ` m ) <-> A. n e. Z y <_ B ) ) |
| 39 | 24 38 | bitrd | |- ( ( ph /\ x e. A ) -> ( A. z e. ran ( n e. Z |-> B ) y <_ z <-> A. n e. Z y <_ B ) ) |
| 40 | 39 | rexbidv | |- ( ( ph /\ x e. A ) -> ( E. y e. RR A. z e. ran ( n e. Z |-> B ) y <_ z <-> E. y e. RR A. n e. Z y <_ B ) ) |
| 41 | 6 40 | mpbird | |- ( ( ph /\ x e. A ) -> E. y e. RR A. z e. ran ( n e. Z |-> B ) y <_ z ) |
| 42 | infrenegsup | |- ( ( ran ( n e. Z |-> B ) C_ RR /\ ran ( n e. Z |-> B ) =/= (/) /\ E. y e. RR A. z e. ran ( n e. Z |-> B ) y <_ z ) -> inf ( ran ( n e. Z |-> B ) , RR , < ) = -u sup ( { r e. RR | -u r e. ran ( n e. Z |-> B ) } , RR , < ) ) |
|
| 43 | 9 20 41 42 | syl3anc | |- ( ( ph /\ x e. A ) -> inf ( ran ( n e. Z |-> B ) , RR , < ) = -u sup ( { r e. RR | -u r e. ran ( n e. Z |-> B ) } , RR , < ) ) |
| 44 | rabid | |- ( r e. { r e. RR | -u r e. ran ( n e. Z |-> B ) } <-> ( r e. RR /\ -u r e. ran ( n e. Z |-> B ) ) ) |
|
| 45 | 7 | recnd | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> B e. CC ) |
| 46 | 45 | adantlr | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> B e. CC ) |
| 47 | simplr | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> r e. RR ) |
|
| 48 | 47 | recnd | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> r e. CC ) |
| 49 | negcon2 | |- ( ( B e. CC /\ r e. CC ) -> ( B = -u r <-> r = -u B ) ) |
|
| 50 | 46 48 49 | syl2anc | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( B = -u r <-> r = -u B ) ) |
| 51 | eqcom | |- ( r = -u B <-> -u B = r ) |
|
| 52 | 50 51 | bitrdi | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( B = -u r <-> -u B = r ) ) |
| 53 | 35 | adantlr | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( ( n e. Z |-> B ) ` n ) = B ) |
| 54 | 53 | eqeq1d | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( ( ( n e. Z |-> B ) ` n ) = -u r <-> B = -u r ) ) |
| 55 | negex | |- -u B e. _V |
|
| 56 | eqid | |- ( n e. Z |-> -u B ) = ( n e. Z |-> -u B ) |
|
| 57 | 56 | fvmpt2 | |- ( ( n e. Z /\ -u B e. _V ) -> ( ( n e. Z |-> -u B ) ` n ) = -u B ) |
| 58 | 55 57 | mpan2 | |- ( n e. Z -> ( ( n e. Z |-> -u B ) ` n ) = -u B ) |
| 59 | 58 | adantl | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( ( n e. Z |-> -u B ) ` n ) = -u B ) |
| 60 | 59 | eqeq1d | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( ( ( n e. Z |-> -u B ) ` n ) = r <-> -u B = r ) ) |
| 61 | 52 54 60 | 3bitr4d | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ n e. Z ) -> ( ( ( n e. Z |-> B ) ` n ) = -u r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) ) |
| 62 | 61 | ralrimiva | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> A. n e. Z ( ( ( n e. Z |-> B ) ` n ) = -u r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) ) |
| 63 | 27 | nfeq1 | |- F/ n ( ( n e. Z |-> B ) ` m ) = -u r |
| 64 | nffvmpt1 | |- F/_ n ( ( n e. Z |-> -u B ) ` m ) |
|
| 65 | 64 | nfeq1 | |- F/ n ( ( n e. Z |-> -u B ) ` m ) = r |
| 66 | 63 65 | nfbi | |- F/ n ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> -u B ) ` m ) = r ) |
| 67 | nfv | |- F/ m ( ( ( n e. Z |-> B ) ` n ) = -u r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) |
|
| 68 | fveqeq2 | |- ( m = n -> ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> B ) ` n ) = -u r ) ) |
|
| 69 | fveqeq2 | |- ( m = n -> ( ( ( n e. Z |-> -u B ) ` m ) = r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) ) |
|
| 70 | 68 69 | bibi12d | |- ( m = n -> ( ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> -u B ) ` m ) = r ) <-> ( ( ( n e. Z |-> B ) ` n ) = -u r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) ) ) |
| 71 | 66 67 70 | cbvralw | |- ( A. m e. Z ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> -u B ) ` m ) = r ) <-> A. n e. Z ( ( ( n e. Z |-> B ) ` n ) = -u r <-> ( ( n e. Z |-> -u B ) ` n ) = r ) ) |
| 72 | 62 71 | sylibr | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> A. m e. Z ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> -u B ) ` m ) = r ) ) |
| 73 | 72 | r19.21bi | |- ( ( ( ( ph /\ x e. A ) /\ r e. RR ) /\ m e. Z ) -> ( ( ( n e. Z |-> B ) ` m ) = -u r <-> ( ( n e. Z |-> -u B ) ` m ) = r ) ) |
| 74 | 73 | rexbidva | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( E. m e. Z ( ( n e. Z |-> B ) ` m ) = -u r <-> E. m e. Z ( ( n e. Z |-> -u B ) ` m ) = r ) ) |
| 75 | 21 | adantr | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( n e. Z |-> B ) Fn Z ) |
| 76 | fvelrnb | |- ( ( n e. Z |-> B ) Fn Z -> ( -u r e. ran ( n e. Z |-> B ) <-> E. m e. Z ( ( n e. Z |-> B ) ` m ) = -u r ) ) |
|
| 77 | 75 76 | syl | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( -u r e. ran ( n e. Z |-> B ) <-> E. m e. Z ( ( n e. Z |-> B ) ` m ) = -u r ) ) |
| 78 | 7 | renegcld | |- ( ( ( ph /\ x e. A ) /\ n e. Z ) -> -u B e. RR ) |
| 79 | 78 | fmpttd | |- ( ( ph /\ x e. A ) -> ( n e. Z |-> -u B ) : Z --> RR ) |
| 80 | 79 | adantr | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( n e. Z |-> -u B ) : Z --> RR ) |
| 81 | 80 | ffnd | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( n e. Z |-> -u B ) Fn Z ) |
| 82 | fvelrnb | |- ( ( n e. Z |-> -u B ) Fn Z -> ( r e. ran ( n e. Z |-> -u B ) <-> E. m e. Z ( ( n e. Z |-> -u B ) ` m ) = r ) ) |
|
| 83 | 81 82 | syl | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( r e. ran ( n e. Z |-> -u B ) <-> E. m e. Z ( ( n e. Z |-> -u B ) ` m ) = r ) ) |
| 84 | 74 77 83 | 3bitr4d | |- ( ( ( ph /\ x e. A ) /\ r e. RR ) -> ( -u r e. ran ( n e. Z |-> B ) <-> r e. ran ( n e. Z |-> -u B ) ) ) |
| 85 | 84 | pm5.32da | |- ( ( ph /\ x e. A ) -> ( ( r e. RR /\ -u r e. ran ( n e. Z |-> B ) ) <-> ( r e. RR /\ r e. ran ( n e. Z |-> -u B ) ) ) ) |
| 86 | 79 | frnd | |- ( ( ph /\ x e. A ) -> ran ( n e. Z |-> -u B ) C_ RR ) |
| 87 | 86 | sseld | |- ( ( ph /\ x e. A ) -> ( r e. ran ( n e. Z |-> -u B ) -> r e. RR ) ) |
| 88 | 87 | pm4.71rd | |- ( ( ph /\ x e. A ) -> ( r e. ran ( n e. Z |-> -u B ) <-> ( r e. RR /\ r e. ran ( n e. Z |-> -u B ) ) ) ) |
| 89 | 85 88 | bitr4d | |- ( ( ph /\ x e. A ) -> ( ( r e. RR /\ -u r e. ran ( n e. Z |-> B ) ) <-> r e. ran ( n e. Z |-> -u B ) ) ) |
| 90 | 44 89 | bitrid | |- ( ( ph /\ x e. A ) -> ( r e. { r e. RR | -u r e. ran ( n e. Z |-> B ) } <-> r e. ran ( n e. Z |-> -u B ) ) ) |
| 91 | 90 | alrimiv | |- ( ( ph /\ x e. A ) -> A. r ( r e. { r e. RR | -u r e. ran ( n e. Z |-> B ) } <-> r e. ran ( n e. Z |-> -u B ) ) ) |
| 92 | nfrab1 | |- F/_ r { r e. RR | -u r e. ran ( n e. Z |-> B ) } |
|
| 93 | nfcv | |- F/_ r ran ( n e. Z |-> -u B ) |
|
| 94 | 92 93 | cleqf | |- ( { r e. RR | -u r e. ran ( n e. Z |-> B ) } = ran ( n e. Z |-> -u B ) <-> A. r ( r e. { r e. RR | -u r e. ran ( n e. Z |-> B ) } <-> r e. ran ( n e. Z |-> -u B ) ) ) |
| 95 | 91 94 | sylibr | |- ( ( ph /\ x e. A ) -> { r e. RR | -u r e. ran ( n e. Z |-> B ) } = ran ( n e. Z |-> -u B ) ) |
| 96 | 95 | supeq1d | |- ( ( ph /\ x e. A ) -> sup ( { r e. RR | -u r e. ran ( n e. Z |-> B ) } , RR , < ) = sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) |
| 97 | 96 | negeqd | |- ( ( ph /\ x e. A ) -> -u sup ( { r e. RR | -u r e. ran ( n e. Z |-> B ) } , RR , < ) = -u sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) |
| 98 | 43 97 | eqtrd | |- ( ( ph /\ x e. A ) -> inf ( ran ( n e. Z |-> B ) , RR , < ) = -u sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) |
| 99 | 98 | mpteq2dva | |- ( ph -> ( x e. A |-> inf ( ran ( n e. Z |-> B ) , RR , < ) ) = ( x e. A |-> -u sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) ) |
| 100 | 2 99 | eqtrid | |- ( ph -> G = ( x e. A |-> -u sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) ) |
| 101 | ltso | |- < Or RR |
|
| 102 | 101 | supex | |- sup ( ran ( n e. Z |-> -u B ) , RR , < ) e. _V |
| 103 | 102 | a1i | |- ( ( ph /\ x e. A ) -> sup ( ran ( n e. Z |-> -u B ) , RR , < ) e. _V ) |
| 104 | eqid | |- ( x e. A |-> sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) = ( x e. A |-> sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) |
|
| 105 | 5 | anassrs | |- ( ( ( ph /\ n e. Z ) /\ x e. A ) -> B e. RR ) |
| 106 | 105 4 | mbfneg | |- ( ( ph /\ n e. Z ) -> ( x e. A |-> -u B ) e. MblFn ) |
| 107 | 5 | renegcld | |- ( ( ph /\ ( n e. Z /\ x e. A ) ) -> -u B e. RR ) |
| 108 | renegcl | |- ( y e. RR -> -u y e. RR ) |
|
| 109 | 108 | ad2antrl | |- ( ( ( ph /\ x e. A ) /\ ( y e. RR /\ A. n e. Z y <_ B ) ) -> -u y e. RR ) |
| 110 | simplr | |- ( ( ( ( ph /\ x e. A ) /\ y e. RR ) /\ n e. Z ) -> y e. RR ) |
|
| 111 | 7 | adantlr | |- ( ( ( ( ph /\ x e. A ) /\ y e. RR ) /\ n e. Z ) -> B e. RR ) |
| 112 | 110 111 | lenegd | |- ( ( ( ( ph /\ x e. A ) /\ y e. RR ) /\ n e. Z ) -> ( y <_ B <-> -u B <_ -u y ) ) |
| 113 | 112 | ralbidva | |- ( ( ( ph /\ x e. A ) /\ y e. RR ) -> ( A. n e. Z y <_ B <-> A. n e. Z -u B <_ -u y ) ) |
| 114 | 113 | biimpd | |- ( ( ( ph /\ x e. A ) /\ y e. RR ) -> ( A. n e. Z y <_ B -> A. n e. Z -u B <_ -u y ) ) |
| 115 | 114 | impr | |- ( ( ( ph /\ x e. A ) /\ ( y e. RR /\ A. n e. Z y <_ B ) ) -> A. n e. Z -u B <_ -u y ) |
| 116 | brralrspcev | |- ( ( -u y e. RR /\ A. n e. Z -u B <_ -u y ) -> E. z e. RR A. n e. Z -u B <_ z ) |
|
| 117 | 109 115 116 | syl2anc | |- ( ( ( ph /\ x e. A ) /\ ( y e. RR /\ A. n e. Z y <_ B ) ) -> E. z e. RR A. n e. Z -u B <_ z ) |
| 118 | 6 117 | rexlimddv | |- ( ( ph /\ x e. A ) -> E. z e. RR A. n e. Z -u B <_ z ) |
| 119 | 1 104 3 106 107 118 | mbfsup | |- ( ph -> ( x e. A |-> sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) e. MblFn ) |
| 120 | 103 119 | mbfneg | |- ( ph -> ( x e. A |-> -u sup ( ran ( n e. Z |-> -u B ) , RR , < ) ) e. MblFn ) |
| 121 | 100 120 | eqeltrd | |- ( ph -> G e. MblFn ) |