This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The infimum of a set of reals A is the negative of the supremum of the negatives of its elements. The antecedent ensures that A is nonempty and has a lower bound. (Contributed by NM, 14-Jun-2005) (Revised by AV, 4-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infrenegsup | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) = - sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infrecl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 2 | 1 | recnd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) ∈ ℂ ) |
| 3 | 2 | negnegd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → - - inf ( 𝐴 , ℝ , < ) = inf ( 𝐴 , ℝ , < ) ) |
| 4 | negeq | ⊢ ( 𝑤 = 𝑧 → - 𝑤 = - 𝑧 ) | |
| 5 | 4 | cbvmptv | ⊢ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) = ( 𝑧 ∈ ℝ ↦ - 𝑧 ) |
| 6 | 5 | mptpreima | ⊢ ( ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) = { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } |
| 7 | eqid | ⊢ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) = ( 𝑤 ∈ ℝ ↦ - 𝑤 ) | |
| 8 | 7 | negiso | ⊢ ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom < , ◡ < ( ℝ , ℝ ) ∧ ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) = ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ) |
| 9 | 8 | simpri | ⊢ ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) = ( 𝑤 ∈ ℝ ↦ - 𝑤 ) |
| 10 | 9 | imaeq1i | ⊢ ( ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) = ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) |
| 11 | 6 10 | eqtr3i | ⊢ { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } = ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) |
| 12 | 11 | supeq1i | ⊢ sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = sup ( ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) , ℝ , < ) |
| 13 | 8 | simpli | ⊢ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom < , ◡ < ( ℝ , ℝ ) |
| 14 | isocnv | ⊢ ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom < , ◡ < ( ℝ , ℝ ) → ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ) | |
| 15 | 13 14 | ax-mp | ⊢ ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) |
| 16 | isoeq1 | ⊢ ( ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) = ( 𝑤 ∈ ℝ ↦ - 𝑤 ) → ( ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ↔ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ) ) | |
| 17 | 9 16 | ax-mp | ⊢ ( ◡ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ↔ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ) |
| 18 | 15 17 | mpbi | ⊢ ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) |
| 19 | 18 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( 𝑤 ∈ ℝ ↦ - 𝑤 ) Isom ◡ < , < ( ℝ , ℝ ) ) |
| 20 | simp1 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → 𝐴 ⊆ ℝ ) | |
| 21 | infm3 | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) | |
| 22 | vex | ⊢ 𝑥 ∈ V | |
| 23 | vex | ⊢ 𝑦 ∈ V | |
| 24 | 22 23 | brcnv | ⊢ ( 𝑥 ◡ < 𝑦 ↔ 𝑦 < 𝑥 ) |
| 25 | 24 | notbii | ⊢ ( ¬ 𝑥 ◡ < 𝑦 ↔ ¬ 𝑦 < 𝑥 ) |
| 26 | 25 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ) |
| 27 | 23 22 | brcnv | ⊢ ( 𝑦 ◡ < 𝑥 ↔ 𝑥 < 𝑦 ) |
| 28 | vex | ⊢ 𝑧 ∈ V | |
| 29 | 23 28 | brcnv | ⊢ ( 𝑦 ◡ < 𝑧 ↔ 𝑧 < 𝑦 ) |
| 30 | 29 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) |
| 31 | 27 30 | imbi12i | ⊢ ( ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 32 | 31 | ralbii | ⊢ ( ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ↔ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) |
| 33 | 26 32 | anbi12i | ⊢ ( ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 34 | 33 | rexbii | ⊢ ( ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ↔ ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀ 𝑦 ∈ ℝ ( 𝑥 < 𝑦 → ∃ 𝑧 ∈ 𝐴 𝑧 < 𝑦 ) ) ) |
| 35 | 21 34 | sylibr | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑥 ◡ < 𝑦 ∧ ∀ 𝑦 ∈ ℝ ( 𝑦 ◡ < 𝑥 → ∃ 𝑧 ∈ 𝐴 𝑦 ◡ < 𝑧 ) ) ) |
| 36 | gtso | ⊢ ◡ < Or ℝ | |
| 37 | 36 | a1i | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ◡ < Or ℝ ) |
| 38 | 19 20 35 37 | supiso | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) “ 𝐴 ) , ℝ , < ) = ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ sup ( 𝐴 , ℝ , ◡ < ) ) ) |
| 39 | 12 38 | eqtrid | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) = ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ sup ( 𝐴 , ℝ , ◡ < ) ) ) |
| 40 | df-inf | ⊢ inf ( 𝐴 , ℝ , < ) = sup ( 𝐴 , ℝ , ◡ < ) | |
| 41 | 40 | eqcomi | ⊢ sup ( 𝐴 , ℝ , ◡ < ) = inf ( 𝐴 , ℝ , < ) |
| 42 | 41 | fveq2i | ⊢ ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ sup ( 𝐴 , ℝ , ◡ < ) ) = ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ inf ( 𝐴 , ℝ , < ) ) |
| 43 | negeq | ⊢ ( 𝑤 = inf ( 𝐴 , ℝ , < ) → - 𝑤 = - inf ( 𝐴 , ℝ , < ) ) | |
| 44 | negex | ⊢ - inf ( 𝐴 , ℝ , < ) ∈ V | |
| 45 | 43 7 44 | fvmpt | ⊢ ( inf ( 𝐴 , ℝ , < ) ∈ ℝ → ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ inf ( 𝐴 , ℝ , < ) ) = - inf ( 𝐴 , ℝ , < ) ) |
| 46 | 42 45 | eqtrid | ⊢ ( inf ( 𝐴 , ℝ , < ) ∈ ℝ → ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ sup ( 𝐴 , ℝ , ◡ < ) ) = - inf ( 𝐴 , ℝ , < ) ) |
| 47 | 1 46 | syl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → ( ( 𝑤 ∈ ℝ ↦ - 𝑤 ) ‘ sup ( 𝐴 , ℝ , ◡ < ) ) = - inf ( 𝐴 , ℝ , < ) ) |
| 48 | 39 47 | eqtr2d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → - inf ( 𝐴 , ℝ , < ) = sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |
| 49 | 48 | negeqd | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → - - inf ( 𝐴 , ℝ , < ) = - sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |
| 50 | 3 49 | eqtr3d | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑥 ≤ 𝑦 ) → inf ( 𝐴 , ℝ , < ) = - sup ( { 𝑧 ∈ ℝ ∣ - 𝑧 ∈ 𝐴 } , ℝ , < ) ) |