This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | ||
| mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
| Assertion | m1detdiag | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐼 𝑀 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | ⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) | |
| 2 | mdetdiag.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 3 | mdetdiag.b | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
| 4 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ 𝑁 ) ) | |
| 5 | eqid | ⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) | |
| 6 | eqid | ⊢ ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 8 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 9 | 1 2 3 4 5 6 7 8 | mdetleib | ⊢ ( 𝑀 ∈ 𝐵 → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
| 10 | 9 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) ) |
| 11 | 2fveq3 | ⊢ ( 𝑁 = { 𝐼 } → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) | |
| 12 | 11 | adantr | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
| 14 | simp2r | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ 𝑉 ) | |
| 15 | eqid | ⊢ ( SymGrp ‘ { 𝐼 } ) = ( SymGrp ‘ { 𝐼 } ) | |
| 16 | eqid | ⊢ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) | |
| 17 | eqid | ⊢ { 𝐼 } = { 𝐼 } | |
| 18 | 15 16 17 | symg1bas | ⊢ ( 𝐼 ∈ 𝑉 → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 19 | 14 18 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 20 | 13 19 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 21 | 20 | mpteq1d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) |
| 22 | snex | ⊢ { 〈 𝐼 , 𝐼 〉 } ∈ V | |
| 23 | 22 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 𝐼 , 𝐼 〉 } ∈ V ) |
| 24 | ovex | ⊢ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V | |
| 25 | fveq2 | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) = ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) | |
| 26 | fveq1 | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑝 ‘ 𝑥 ) = ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) ) | |
| 27 | 26 | oveq1d | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) = ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) |
| 28 | 27 | mpteq2dv | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) |
| 29 | 28 | oveq2d | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) |
| 30 | 25 29 | oveq12d | ⊢ ( 𝑝 = { 〈 𝐼 , 𝐼 〉 } → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) |
| 31 | 30 | fmptsng | ⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) |
| 32 | 31 | eqcomd | ⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ∈ V ) → ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } ) |
| 33 | 23 24 32 | sylancl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } ) |
| 34 | eqid | ⊢ ( SymGrp ‘ 𝑁 ) = ( SymGrp ‘ 𝑁 ) | |
| 35 | eqid | ⊢ { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } | |
| 36 | 34 4 35 6 | psgnfn | ⊢ ( pmSgn ‘ 𝑁 ) Fn { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } |
| 37 | 18 | adantl | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 38 | 12 37 | eqtrd | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 39 | 38 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 40 | rabeq | ⊢ ( ( Base ‘ ( SymGrp ‘ 𝑁 ) ) = { { 〈 𝐼 , 𝐼 〉 } } → { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) | |
| 41 | 39 40 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) |
| 42 | difeq1 | ⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → ( 𝑏 ∖ I ) = ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ) | |
| 43 | 42 | dmeqd | ⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → dom ( 𝑏 ∖ I ) = dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ) |
| 44 | 43 | eleq1d | ⊢ ( 𝑏 = { 〈 𝐼 , 𝐼 〉 } → ( dom ( 𝑏 ∖ I ) ∈ Fin ↔ dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) ) |
| 45 | 44 | rabsnif | ⊢ { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) |
| 46 | 45 | a1i | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 𝑏 ∈ { { 〈 𝐼 , 𝐼 〉 } } ∣ dom ( 𝑏 ∖ I ) ∈ Fin } = if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) ) |
| 47 | restidsing | ⊢ ( I ↾ { 𝐼 } ) = ( { 𝐼 } × { 𝐼 } ) | |
| 48 | xpsng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → ( { 𝐼 } × { 𝐼 } ) = { 〈 𝐼 , 𝐼 〉 } ) | |
| 49 | 48 | anidms | ⊢ ( 𝐼 ∈ 𝑉 → ( { 𝐼 } × { 𝐼 } ) = { 〈 𝐼 , 𝐼 〉 } ) |
| 50 | 47 49 | eqtr2id | ⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) |
| 51 | fnsng | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ 𝐼 ∈ 𝑉 ) → { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } ) | |
| 52 | 51 | anidms | ⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } ) |
| 53 | fnnfpeq0 | ⊢ ( { 〈 𝐼 , 𝐼 〉 } Fn { 𝐼 } → ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ↔ { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) ) | |
| 54 | 52 53 | syl | ⊢ ( 𝐼 ∈ 𝑉 → ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ↔ { 〈 𝐼 , 𝐼 〉 } = ( I ↾ { 𝐼 } ) ) ) |
| 55 | 50 54 | mpbird | ⊢ ( 𝐼 ∈ 𝑉 → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) = ∅ ) |
| 56 | 0fi | ⊢ ∅ ∈ Fin | |
| 57 | 55 56 | eqeltrdi | ⊢ ( 𝐼 ∈ 𝑉 → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
| 58 | 57 | adantl | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin ) |
| 60 | 59 | iftrued | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → if ( dom ( { 〈 𝐼 , 𝐼 〉 } ∖ I ) ∈ Fin , { { 〈 𝐼 , 𝐼 〉 } } , ∅ ) = { { 〈 𝐼 , 𝐼 〉 } } ) |
| 61 | 41 46 60 | 3eqtrrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { { 〈 𝐼 , 𝐼 〉 } } = { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) |
| 62 | 61 | fneq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ↔ ( pmSgn ‘ 𝑁 ) Fn { 𝑏 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ∣ dom ( 𝑏 ∖ I ) ∈ Fin } ) ) |
| 63 | 36 62 | mpbiri | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ) |
| 64 | 22 | snid | ⊢ { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } |
| 65 | fvco2 | ⊢ ( ( ( pmSgn ‘ 𝑁 ) Fn { { 〈 𝐼 , 𝐼 〉 } } ∧ { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) ) | |
| 66 | 63 64 65 | sylancl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) ) |
| 67 | fveq2 | ⊢ ( 𝑁 = { 𝐼 } → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) | |
| 68 | 67 | adantr | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) |
| 69 | 68 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( pmSgn ‘ 𝑁 ) = ( pmSgn ‘ { 𝐼 } ) ) |
| 70 | 69 | fveq1d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) |
| 71 | snidg | ⊢ ( { 〈 𝐼 , 𝐼 〉 } ∈ V → { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) | |
| 72 | 22 71 | mp1i | ⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } ∈ { { 〈 𝐼 , 𝐼 〉 } } ) |
| 73 | 72 18 | eleqtrrd | ⊢ ( 𝐼 ∈ 𝑉 → { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) |
| 74 | 73 | ancli | ⊢ ( 𝐼 ∈ 𝑉 → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
| 75 | 74 | adantl | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
| 76 | 75 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) ) |
| 77 | eqid | ⊢ ( pmSgn ‘ { 𝐼 } ) = ( pmSgn ‘ { 𝐼 } ) | |
| 78 | 17 15 16 77 | psgnsn | ⊢ ( ( 𝐼 ∈ 𝑉 ∧ { 〈 𝐼 , 𝐼 〉 } ∈ ( Base ‘ ( SymGrp ‘ { 𝐼 } ) ) ) → ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
| 79 | 76 78 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ { 𝐼 } ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
| 80 | 70 79 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = 1 ) |
| 81 | 80 | fveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ ( ( pmSgn ‘ 𝑁 ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ) = ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) ) |
| 82 | crngring | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) | |
| 83 | 82 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 84 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 85 | 5 84 | zrh1 | ⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 86 | 83 85 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 87 | 66 81 86 | 3eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) = ( 1r ‘ 𝑅 ) ) |
| 88 | simp2l | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑁 = { 𝐼 } ) | |
| 89 | 88 | mpteq1d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) = ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) |
| 90 | 89 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) |
| 91 | 8 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 92 | 82 91 | syl | ⊢ ( 𝑅 ∈ CRing → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 93 | 92 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 94 | snidg | ⊢ ( 𝐼 ∈ 𝑉 → 𝐼 ∈ { 𝐼 } ) | |
| 95 | 94 | adantl | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ { 𝐼 } ) |
| 96 | eleq2 | ⊢ ( 𝑁 = { 𝐼 } → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) | |
| 97 | 96 | adantr | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → ( 𝐼 ∈ 𝑁 ↔ 𝐼 ∈ { 𝐼 } ) ) |
| 98 | 95 97 | mpbird | ⊢ ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) → 𝐼 ∈ 𝑁 ) |
| 99 | 3 | eleq2i | ⊢ ( 𝑀 ∈ 𝐵 ↔ 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 100 | 99 | biimpi | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 101 | simpl | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → 𝐼 ∈ 𝑁 ) | |
| 102 | simpr | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) | |
| 103 | 101 101 102 | 3jca | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 104 | 98 100 103 | syl2an | ⊢ ( ( ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 105 | 104 | 3adant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ) |
| 106 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 107 | 2 106 | matecl | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐼 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
| 108 | 105 107 | syl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
| 109 | 8 106 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 110 | 108 109 | eleqtrdi | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 111 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 112 | fveq2 | ⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) = ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) ) | |
| 113 | eqvisset | ⊢ ( 𝑥 = 𝐼 → 𝐼 ∈ V ) | |
| 114 | fvsng | ⊢ ( ( 𝐼 ∈ V ∧ 𝐼 ∈ V ) → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) = 𝐼 ) | |
| 115 | 113 113 114 | syl2anc | ⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝐼 ) = 𝐼 ) |
| 116 | 112 115 | eqtrd | ⊢ ( 𝑥 = 𝐼 → ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) = 𝐼 ) |
| 117 | id | ⊢ ( 𝑥 = 𝐼 → 𝑥 = 𝐼 ) | |
| 118 | 116 117 | oveq12d | ⊢ ( 𝑥 = 𝐼 → ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) = ( 𝐼 𝑀 𝐼 ) ) |
| 119 | 111 118 | gsumsn | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 120 | 93 14 110 119 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ { 𝐼 } ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 121 | 90 120 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 122 | 87 121 | oveq12d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) ) |
| 123 | 98 | 3ad2ant2 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ 𝑁 ) |
| 124 | 100 | 3ad2ant3 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ ( Base ‘ 𝐴 ) ) |
| 125 | 123 123 124 107 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) |
| 126 | 106 7 84 | ringlidm | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 127 | 83 125 126 | syl2anc | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) ( 𝐼 𝑀 𝐼 ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 128 | 122 127 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 129 | 128 | opeq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 = 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 ) |
| 130 | 129 | sneqd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } ) |
| 131 | ovex | ⊢ ( 𝐼 𝑀 𝐼 ) ∈ V | |
| 132 | eqidd | ⊢ ( 𝑦 = { 〈 𝐼 , 𝐼 〉 } → ( 𝐼 𝑀 𝐼 ) = ( 𝐼 𝑀 𝐼 ) ) | |
| 133 | 132 | fmptsng | ⊢ ( ( { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( 𝐼 𝑀 𝐼 ) ∈ V ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
| 134 | 23 131 133 | sylancl | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( 𝐼 𝑀 𝐼 ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
| 135 | 130 134 | eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → { 〈 { 〈 𝐼 , 𝐼 〉 } , ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ { 〈 𝐼 , 𝐼 〉 } ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( { 〈 𝐼 , 𝐼 〉 } ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) 〉 } = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
| 136 | 21 33 135 | 3eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) = ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) |
| 137 | 136 | oveq2d | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑝 ∈ ( Base ‘ ( SymGrp ‘ 𝑁 ) ) ↦ ( ( ( ( ℤRHom ‘ 𝑅 ) ∘ ( pmSgn ‘ 𝑁 ) ) ‘ 𝑝 ) ( .r ‘ 𝑅 ) ( ( mulGrp ‘ 𝑅 ) Σg ( 𝑥 ∈ 𝑁 ↦ ( ( 𝑝 ‘ 𝑥 ) 𝑀 𝑥 ) ) ) ) ) ) = ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) ) |
| 138 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 139 | 82 138 | syl | ⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Mnd ) |
| 140 | 139 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Mnd ) |
| 141 | 106 132 | gsumsn | ⊢ ( ( 𝑅 ∈ Mnd ∧ { 〈 𝐼 , 𝐼 〉 } ∈ V ∧ ( 𝐼 𝑀 𝐼 ) ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 142 | 140 23 125 141 | syl3anc | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 Σg ( 𝑦 ∈ { { 〈 𝐼 , 𝐼 〉 } } ↦ ( 𝐼 𝑀 𝐼 ) ) ) = ( 𝐼 𝑀 𝐼 ) ) |
| 143 | 10 137 142 | 3eqtrd | ⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑁 = { 𝐼 } ∧ 𝐼 ∈ 𝑉 ) ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ 𝑀 ) = ( 𝐼 𝑀 𝐼 ) ) |