This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each entry (according to Wikipedia "Matrix (mathematics)", 30-Dec-2018, https://en.wikipedia.org/wiki/Matrix_(mathematics)#Definition (or element or component or coefficient or cell) of a matrix is an element of the underlying ring. (Contributed by AV, 16-Dec-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | matecl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| matecl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| Assertion | matecl | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | matecl.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
| 2 | matecl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 4 | 1 3 | matrcl | ⊢ ( 𝑀 ∈ ( Base ‘ 𝐴 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 5 | 4 | 3ad2ant3 | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 6 | 1 2 | matbas2 | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) = ( Base ‘ 𝐴 ) ) |
| 7 | 6 | eqcomd | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( Base ‘ 𝐴 ) = ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) |
| 8 | 7 | eleq2d | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑀 ∈ ( Base ‘ 𝐴 ) ↔ 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ) ) |
| 9 | 2 | fvexi | ⊢ 𝐾 ∈ V |
| 10 | 9 | a1i | ⊢ ( 𝑅 ∈ V → 𝐾 ∈ V ) |
| 11 | sqxpexg | ⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ V ) | |
| 12 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ( 𝑁 × 𝑁 ) ∈ V ) → ( 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑀 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) ↔ 𝑀 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ) ) |
| 14 | ffnov | ⊢ ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 ↔ ( 𝑀 Fn ( 𝑁 × 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 ) ) | |
| 15 | oveq1 | ⊢ ( 𝑖 = 𝐼 → ( 𝑖 𝑀 𝑗 ) = ( 𝐼 𝑀 𝑗 ) ) | |
| 16 | 15 | eleq1d | ⊢ ( 𝑖 = 𝐼 → ( ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 ↔ ( 𝐼 𝑀 𝑗 ) ∈ 𝐾 ) ) |
| 17 | oveq2 | ⊢ ( 𝑗 = 𝐽 → ( 𝐼 𝑀 𝑗 ) = ( 𝐼 𝑀 𝐽 ) ) | |
| 18 | 17 | eleq1d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝐼 𝑀 𝑗 ) ∈ 𝐾 ↔ ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) |
| 19 | 16 18 | rspc2v | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) |
| 20 | 19 | com12 | ⊢ ( ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑀 Fn ( 𝑁 × 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) |
| 22 | 21 | a1i | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( ( 𝑀 Fn ( 𝑁 × 𝑁 ) ∧ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ( 𝑖 𝑀 𝑗 ) ∈ 𝐾 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) |
| 23 | 14 22 | biimtrid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑀 : ( 𝑁 × 𝑁 ) ⟶ 𝐾 → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) |
| 24 | 13 23 | sylbid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑀 ∈ ( 𝐾 ↑m ( 𝑁 × 𝑁 ) ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) |
| 25 | 8 24 | sylbid | ⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝑀 ∈ ( Base ‘ 𝐴 ) → ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) |
| 26 | 25 | com13 | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ) → ( 𝑀 ∈ ( Base ‘ 𝐴 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) |
| 27 | 26 | ex | ⊢ ( 𝐼 ∈ 𝑁 → ( 𝐽 ∈ 𝑁 → ( 𝑀 ∈ ( Base ‘ 𝐴 ) → ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) ) ) ) |
| 28 | 27 | 3imp1 | ⊢ ( ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) ∧ ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) |
| 29 | 5 28 | mpdan | ⊢ ( ( 𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝑀 ∈ ( Base ‘ 𝐴 ) ) → ( 𝐼 𝑀 𝐽 ) ∈ 𝐾 ) |