This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The determinant of a 1-dimensional matrix equals its (single) entry. (Contributed by AV, 6-Aug-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mdetdiag.d | |- D = ( N maDet R ) |
|
| mdetdiag.a | |- A = ( N Mat R ) |
||
| mdetdiag.b | |- B = ( Base ` A ) |
||
| Assertion | m1detdiag | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( I M I ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdetdiag.d | |- D = ( N maDet R ) |
|
| 2 | mdetdiag.a | |- A = ( N Mat R ) |
|
| 3 | mdetdiag.b | |- B = ( Base ` A ) |
|
| 4 | eqid | |- ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` N ) ) |
|
| 5 | eqid | |- ( ZRHom ` R ) = ( ZRHom ` R ) |
|
| 6 | eqid | |- ( pmSgn ` N ) = ( pmSgn ` N ) |
|
| 7 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 8 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 9 | 1 2 3 4 5 6 7 8 | mdetleib | |- ( M e. B -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
| 10 | 9 | 3ad2ant3 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) ) |
| 11 | 2fveq3 | |- ( N = { I } -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
|
| 12 | 11 | adantr | |- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
| 13 | 12 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = ( Base ` ( SymGrp ` { I } ) ) ) |
| 14 | simp2r | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. V ) |
|
| 15 | eqid | |- ( SymGrp ` { I } ) = ( SymGrp ` { I } ) |
|
| 16 | eqid | |- ( Base ` ( SymGrp ` { I } ) ) = ( Base ` ( SymGrp ` { I } ) ) |
|
| 17 | eqid | |- { I } = { I } |
|
| 18 | 15 16 17 | symg1bas | |- ( I e. V -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
| 19 | 14 18 | syl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
| 20 | 13 19 | eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
| 21 | 20 | mpteq1d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
| 22 | snex | |- { <. I , I >. } e. _V |
|
| 23 | 22 | a1i | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. I , I >. } e. _V ) |
| 24 | ovex | |- ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V |
|
| 25 | fveq2 | |- ( p = { <. I , I >. } -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) = ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ) |
|
| 26 | fveq1 | |- ( p = { <. I , I >. } -> ( p ` x ) = ( { <. I , I >. } ` x ) ) |
|
| 27 | 26 | oveq1d | |- ( p = { <. I , I >. } -> ( ( p ` x ) M x ) = ( ( { <. I , I >. } ` x ) M x ) ) |
| 28 | 27 | mpteq2dv | |- ( p = { <. I , I >. } -> ( x e. N |-> ( ( p ` x ) M x ) ) = ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) |
| 29 | 28 | oveq2d | |- ( p = { <. I , I >. } -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) |
| 30 | 25 29 | oveq12d | |- ( p = { <. I , I >. } -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) = ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) ) |
| 31 | 30 | fmptsng | |- ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) |
| 32 | 31 | eqcomd | |- ( ( { <. I , I >. } e. _V /\ ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) e. _V ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) |
| 33 | 23 24 32 | sylancl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. { { <. I , I >. } } |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } ) |
| 34 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 35 | eqid | |- { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } |
|
| 36 | 34 4 35 6 | psgnfn | |- ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } |
| 37 | 18 | adantl | |- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` { I } ) ) = { { <. I , I >. } } ) |
| 38 | 12 37 | eqtrd | |- ( ( N = { I } /\ I e. V ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
| 39 | 38 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } ) |
| 40 | rabeq | |- ( ( Base ` ( SymGrp ` N ) ) = { { <. I , I >. } } -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) |
|
| 41 | 39 40 | syl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } = { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } ) |
| 42 | difeq1 | |- ( b = { <. I , I >. } -> ( b \ _I ) = ( { <. I , I >. } \ _I ) ) |
|
| 43 | 42 | dmeqd | |- ( b = { <. I , I >. } -> dom ( b \ _I ) = dom ( { <. I , I >. } \ _I ) ) |
| 44 | 43 | eleq1d | |- ( b = { <. I , I >. } -> ( dom ( b \ _I ) e. Fin <-> dom ( { <. I , I >. } \ _I ) e. Fin ) ) |
| 45 | 44 | rabsnif | |- { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) |
| 46 | 45 | a1i | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { b e. { { <. I , I >. } } | dom ( b \ _I ) e. Fin } = if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) ) |
| 47 | restidsing | |- ( _I |` { I } ) = ( { I } X. { I } ) |
|
| 48 | xpsng | |- ( ( I e. V /\ I e. V ) -> ( { I } X. { I } ) = { <. I , I >. } ) |
|
| 49 | 48 | anidms | |- ( I e. V -> ( { I } X. { I } ) = { <. I , I >. } ) |
| 50 | 47 49 | eqtr2id | |- ( I e. V -> { <. I , I >. } = ( _I |` { I } ) ) |
| 51 | fnsng | |- ( ( I e. V /\ I e. V ) -> { <. I , I >. } Fn { I } ) |
|
| 52 | 51 | anidms | |- ( I e. V -> { <. I , I >. } Fn { I } ) |
| 53 | fnnfpeq0 | |- ( { <. I , I >. } Fn { I } -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) |
|
| 54 | 52 53 | syl | |- ( I e. V -> ( dom ( { <. I , I >. } \ _I ) = (/) <-> { <. I , I >. } = ( _I |` { I } ) ) ) |
| 55 | 50 54 | mpbird | |- ( I e. V -> dom ( { <. I , I >. } \ _I ) = (/) ) |
| 56 | 0fi | |- (/) e. Fin |
|
| 57 | 55 56 | eqeltrdi | |- ( I e. V -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
| 58 | 57 | adantl | |- ( ( N = { I } /\ I e. V ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
| 59 | 58 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> dom ( { <. I , I >. } \ _I ) e. Fin ) |
| 60 | 59 | iftrued | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> if ( dom ( { <. I , I >. } \ _I ) e. Fin , { { <. I , I >. } } , (/) ) = { { <. I , I >. } } ) |
| 61 | 41 46 60 | 3eqtrrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { { <. I , I >. } } = { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) |
| 62 | 61 | fneq2d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) Fn { { <. I , I >. } } <-> ( pmSgn ` N ) Fn { b e. ( Base ` ( SymGrp ` N ) ) | dom ( b \ _I ) e. Fin } ) ) |
| 63 | 36 62 | mpbiri | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) Fn { { <. I , I >. } } ) |
| 64 | 22 | snid | |- { <. I , I >. } e. { { <. I , I >. } } |
| 65 | fvco2 | |- ( ( ( pmSgn ` N ) Fn { { <. I , I >. } } /\ { <. I , I >. } e. { { <. I , I >. } } ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) |
|
| 66 | 63 64 65 | sylancl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) ) |
| 67 | fveq2 | |- ( N = { I } -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
|
| 68 | 67 | adantr | |- ( ( N = { I } /\ I e. V ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
| 69 | 68 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( pmSgn ` N ) = ( pmSgn ` { I } ) ) |
| 70 | 69 | fveq1d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = ( ( pmSgn ` { I } ) ` { <. I , I >. } ) ) |
| 71 | snidg | |- ( { <. I , I >. } e. _V -> { <. I , I >. } e. { { <. I , I >. } } ) |
|
| 72 | 22 71 | mp1i | |- ( I e. V -> { <. I , I >. } e. { { <. I , I >. } } ) |
| 73 | 72 18 | eleqtrrd | |- ( I e. V -> { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) |
| 74 | 73 | ancli | |- ( I e. V -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
| 75 | 74 | adantl | |- ( ( N = { I } /\ I e. V ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
| 76 | 75 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) ) |
| 77 | eqid | |- ( pmSgn ` { I } ) = ( pmSgn ` { I } ) |
|
| 78 | 17 15 16 77 | psgnsn | |- ( ( I e. V /\ { <. I , I >. } e. ( Base ` ( SymGrp ` { I } ) ) ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) |
| 79 | 76 78 | syl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` { I } ) ` { <. I , I >. } ) = 1 ) |
| 80 | 70 79 | eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( pmSgn ` N ) ` { <. I , I >. } ) = 1 ) |
| 81 | 80 | fveq2d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` ( ( pmSgn ` N ) ` { <. I , I >. } ) ) = ( ( ZRHom ` R ) ` 1 ) ) |
| 82 | crngring | |- ( R e. CRing -> R e. Ring ) |
|
| 83 | 82 | 3ad2ant1 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Ring ) |
| 84 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 85 | 5 84 | zrh1 | |- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 86 | 83 85 | syl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 87 | 66 81 86 | 3eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) = ( 1r ` R ) ) |
| 88 | simp2l | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> N = { I } ) |
|
| 89 | 88 | mpteq1d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) = ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) |
| 90 | 89 | oveq2d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) |
| 91 | 8 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 92 | 82 91 | syl | |- ( R e. CRing -> ( mulGrp ` R ) e. Mnd ) |
| 93 | 92 | 3ad2ant1 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( mulGrp ` R ) e. Mnd ) |
| 94 | snidg | |- ( I e. V -> I e. { I } ) |
|
| 95 | 94 | adantl | |- ( ( N = { I } /\ I e. V ) -> I e. { I } ) |
| 96 | eleq2 | |- ( N = { I } -> ( I e. N <-> I e. { I } ) ) |
|
| 97 | 96 | adantr | |- ( ( N = { I } /\ I e. V ) -> ( I e. N <-> I e. { I } ) ) |
| 98 | 95 97 | mpbird | |- ( ( N = { I } /\ I e. V ) -> I e. N ) |
| 99 | 3 | eleq2i | |- ( M e. B <-> M e. ( Base ` A ) ) |
| 100 | 99 | biimpi | |- ( M e. B -> M e. ( Base ` A ) ) |
| 101 | simpl | |- ( ( I e. N /\ M e. ( Base ` A ) ) -> I e. N ) |
|
| 102 | simpr | |- ( ( I e. N /\ M e. ( Base ` A ) ) -> M e. ( Base ` A ) ) |
|
| 103 | 101 101 102 | 3jca | |- ( ( I e. N /\ M e. ( Base ` A ) ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
| 104 | 98 100 103 | syl2an | |- ( ( ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
| 105 | 104 | 3adant1 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) ) |
| 106 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 107 | 2 106 | matecl | |- ( ( I e. N /\ I e. N /\ M e. ( Base ` A ) ) -> ( I M I ) e. ( Base ` R ) ) |
| 108 | 105 107 | syl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) |
| 109 | 8 106 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 110 | 108 109 | eleqtrdi | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) |
| 111 | eqid | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
|
| 112 | fveq2 | |- ( x = I -> ( { <. I , I >. } ` x ) = ( { <. I , I >. } ` I ) ) |
|
| 113 | eqvisset | |- ( x = I -> I e. _V ) |
|
| 114 | fvsng | |- ( ( I e. _V /\ I e. _V ) -> ( { <. I , I >. } ` I ) = I ) |
|
| 115 | 113 113 114 | syl2anc | |- ( x = I -> ( { <. I , I >. } ` I ) = I ) |
| 116 | 112 115 | eqtrd | |- ( x = I -> ( { <. I , I >. } ` x ) = I ) |
| 117 | id | |- ( x = I -> x = I ) |
|
| 118 | 116 117 | oveq12d | |- ( x = I -> ( ( { <. I , I >. } ` x ) M x ) = ( I M I ) ) |
| 119 | 111 118 | gsumsn | |- ( ( ( mulGrp ` R ) e. Mnd /\ I e. V /\ ( I M I ) e. ( Base ` ( mulGrp ` R ) ) ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
| 120 | 93 14 110 119 | syl3anc | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. { I } |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
| 121 | 90 120 | eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) = ( I M I ) ) |
| 122 | 87 121 | oveq12d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) ) |
| 123 | 98 | 3ad2ant2 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> I e. N ) |
| 124 | 100 | 3ad2ant3 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> M e. ( Base ` A ) ) |
| 125 | 123 123 124 107 | syl3anc | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( I M I ) e. ( Base ` R ) ) |
| 126 | 106 7 84 | ringlidm | |- ( ( R e. Ring /\ ( I M I ) e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) |
| 127 | 83 125 126 | syl2anc | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( I M I ) ) = ( I M I ) ) |
| 128 | 122 127 | eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) = ( I M I ) ) |
| 129 | 128 | opeq2d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. = <. { <. I , I >. } , ( I M I ) >. ) |
| 130 | 129 | sneqd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = { <. { <. I , I >. } , ( I M I ) >. } ) |
| 131 | ovex | |- ( I M I ) e. _V |
|
| 132 | eqidd | |- ( y = { <. I , I >. } -> ( I M I ) = ( I M I ) ) |
|
| 133 | 132 | fmptsng | |- ( ( { <. I , I >. } e. _V /\ ( I M I ) e. _V ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
| 134 | 23 131 133 | sylancl | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( I M I ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
| 135 | 130 134 | eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> { <. { <. I , I >. } , ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` { <. I , I >. } ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( { <. I , I >. } ` x ) M x ) ) ) ) >. } = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
| 136 | 21 33 135 | 3eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) = ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) |
| 137 | 136 | oveq2d | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( p e. ( Base ` ( SymGrp ` N ) ) |-> ( ( ( ( ZRHom ` R ) o. ( pmSgn ` N ) ) ` p ) ( .r ` R ) ( ( mulGrp ` R ) gsum ( x e. N |-> ( ( p ` x ) M x ) ) ) ) ) ) = ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) ) |
| 138 | ringmnd | |- ( R e. Ring -> R e. Mnd ) |
|
| 139 | 82 138 | syl | |- ( R e. CRing -> R e. Mnd ) |
| 140 | 139 | 3ad2ant1 | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> R e. Mnd ) |
| 141 | 106 132 | gsumsn | |- ( ( R e. Mnd /\ { <. I , I >. } e. _V /\ ( I M I ) e. ( Base ` R ) ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) |
| 142 | 140 23 125 141 | syl3anc | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( R gsum ( y e. { { <. I , I >. } } |-> ( I M I ) ) ) = ( I M I ) ) |
| 143 | 10 137 142 | 3eqtrd | |- ( ( R e. CRing /\ ( N = { I } /\ I e. V ) /\ M e. B ) -> ( D ` M ) = ( I M I ) ) |