This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of Gleason p. 123. (Contributed by NM, 26-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltaddpr | |- ( ( A e. P. /\ B e. P. ) -> A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prn0 | |- ( B e. P. -> B =/= (/) ) |
|
| 2 | n0 | |- ( B =/= (/) <-> E. y y e. B ) |
|
| 3 | 1 2 | sylib | |- ( B e. P. -> E. y y e. B ) |
| 4 | 3 | adantl | |- ( ( A e. P. /\ B e. P. ) -> E. y y e. B ) |
| 5 | addclpr | |- ( ( A e. P. /\ B e. P. ) -> ( A +P. B ) e. P. ) |
|
| 6 | df-plp | |- +P. = ( w e. P. , v e. P. |-> { x | E. y e. w E. z e. v x = ( y +Q z ) } ) |
|
| 7 | addclnq | |- ( ( y e. Q. /\ z e. Q. ) -> ( y +Q z ) e. Q. ) |
|
| 8 | 6 7 | genpprecl | |- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ y e. B ) -> ( x +Q y ) e. ( A +P. B ) ) ) |
| 9 | 8 | imp | |- ( ( ( A e. P. /\ B e. P. ) /\ ( x e. A /\ y e. B ) ) -> ( x +Q y ) e. ( A +P. B ) ) |
| 10 | elprnq | |- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> ( x +Q y ) e. Q. ) |
|
| 11 | addnqf | |- +Q : ( Q. X. Q. ) --> Q. |
|
| 12 | 11 | fdmi | |- dom +Q = ( Q. X. Q. ) |
| 13 | 0nnq | |- -. (/) e. Q. |
|
| 14 | 12 13 | ndmovrcl | |- ( ( x +Q y ) e. Q. -> ( x e. Q. /\ y e. Q. ) ) |
| 15 | ltaddnq | |- ( ( x e. Q. /\ y e. Q. ) -> x |
|
| 16 | 10 14 15 | 3syl | |- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> x |
| 17 | prcdnq | |- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> ( xx e. ( A +P. B ) ) ) |
|
| 18 | 16 17 | mpd | |- ( ( ( A +P. B ) e. P. /\ ( x +Q y ) e. ( A +P. B ) ) -> x e. ( A +P. B ) ) |
| 19 | 5 9 18 | syl2an2r | |- ( ( ( A e. P. /\ B e. P. ) /\ ( x e. A /\ y e. B ) ) -> x e. ( A +P. B ) ) |
| 20 | 19 | exp32 | |- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( y e. B -> x e. ( A +P. B ) ) ) ) |
| 21 | 20 | com23 | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( x e. A -> x e. ( A +P. B ) ) ) ) |
| 22 | 21 | alrimdv | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A. x ( x e. A -> x e. ( A +P. B ) ) ) ) |
| 23 | df-ss | |- ( A C_ ( A +P. B ) <-> A. x ( x e. A -> x e. ( A +P. B ) ) ) |
|
| 24 | 22 23 | imbitrrdi | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A C_ ( A +P. B ) ) ) |
| 25 | vex | |- y e. _V |
|
| 26 | 25 | prlem934 | |- ( A e. P. -> E. x e. A -. ( x +Q y ) e. A ) |
| 27 | 26 | adantr | |- ( ( A e. P. /\ B e. P. ) -> E. x e. A -. ( x +Q y ) e. A ) |
| 28 | eleq2 | |- ( A = ( A +P. B ) -> ( ( x +Q y ) e. A <-> ( x +Q y ) e. ( A +P. B ) ) ) |
|
| 29 | 28 | biimprcd | |- ( ( x +Q y ) e. ( A +P. B ) -> ( A = ( A +P. B ) -> ( x +Q y ) e. A ) ) |
| 30 | 29 | con3d | |- ( ( x +Q y ) e. ( A +P. B ) -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) |
| 31 | 8 30 | syl6 | |- ( ( A e. P. /\ B e. P. ) -> ( ( x e. A /\ y e. B ) -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) ) |
| 32 | 31 | expd | |- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( y e. B -> ( -. ( x +Q y ) e. A -> -. A = ( A +P. B ) ) ) ) ) |
| 33 | 32 | com34 | |- ( ( A e. P. /\ B e. P. ) -> ( x e. A -> ( -. ( x +Q y ) e. A -> ( y e. B -> -. A = ( A +P. B ) ) ) ) ) |
| 34 | 33 | rexlimdv | |- ( ( A e. P. /\ B e. P. ) -> ( E. x e. A -. ( x +Q y ) e. A -> ( y e. B -> -. A = ( A +P. B ) ) ) ) |
| 35 | 27 34 | mpd | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> -. A = ( A +P. B ) ) ) |
| 36 | 24 35 | jcad | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> ( A C_ ( A +P. B ) /\ -. A = ( A +P. B ) ) ) ) |
| 37 | dfpss2 | |- ( A C. ( A +P. B ) <-> ( A C_ ( A +P. B ) /\ -. A = ( A +P. B ) ) ) |
|
| 38 | 36 37 | imbitrrdi | |- ( ( A e. P. /\ B e. P. ) -> ( y e. B -> A C. ( A +P. B ) ) ) |
| 39 | 38 | exlimdv | |- ( ( A e. P. /\ B e. P. ) -> ( E. y y e. B -> A C. ( A +P. B ) ) ) |
| 40 | 4 39 | mpd | |- ( ( A e. P. /\ B e. P. ) -> A C. ( A +P. B ) ) |
| 41 | ltprord | |- ( ( A e. P. /\ ( A +P. B ) e. P. ) -> ( A |
|
| 42 | 5 41 | syldan | |- ( ( A e. P. /\ B e. P. ) -> ( A |
| 43 | 40 42 | mpbird | |- ( ( A e. P. /\ B e. P. ) -> A |