This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnlm.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lssnlm.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssnlm | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnlm.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lssnlm.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | nlmngp | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) | |
| 4 | nlmlmod | ⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod ) | |
| 5 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 6 | 4 5 | sylan | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 7 | 1 | subgngp | ⊢ ( ( 𝑊 ∈ NrmGrp ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → 𝑋 ∈ NrmGrp ) |
| 8 | 3 6 7 | syl2an2r | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmGrp ) |
| 9 | 1 2 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 10 | 4 9 | sylan | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ LMod ) |
| 11 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 12 | 1 11 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 13 | 12 | adantl | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 14 | 11 | nlmnrg | ⊢ ( 𝑊 ∈ NrmMod → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
| 16 | 13 15 | eqeltrrd | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ NrmRing ) |
| 17 | 8 10 16 | 3jca | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ( 𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ NrmRing ) ) |
| 18 | simpll | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ NrmMod ) | |
| 19 | simprl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) | |
| 20 | 13 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) |
| 22 | 19 21 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 23 | 6 | adantr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 24 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 25 | 24 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 26 | 23 25 | syl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 27 | simprr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑋 ) ) | |
| 28 | 1 | subgbas | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 29 | 23 28 | syl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 30 | 27 29 | eleqtrrd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ 𝑈 ) |
| 31 | 26 30 | sseldd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 32 | eqid | ⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) | |
| 33 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 34 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 35 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑊 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) | |
| 36 | 24 32 33 11 34 35 | nmvs | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 37 | 18 22 31 36 | syl3anc | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 38 | simplr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑈 ∈ 𝑆 ) | |
| 39 | 1 33 | ressvsca | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 40 | 38 39 | syl | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑋 ) ) |
| 41 | 40 | oveqd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) |
| 42 | 41 | fveq2d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) ) |
| 43 | 4 | ad2antrr | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → 𝑊 ∈ LMod ) |
| 44 | 11 33 34 2 | lssvscl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 45 | 43 38 22 30 44 | syl22anc | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 46 | eqid | ⊢ ( norm ‘ 𝑋 ) = ( norm ‘ 𝑋 ) | |
| 47 | 1 32 46 | subgnm2 | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 48 | 6 45 47 | syl2an2r | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 49 | 42 48 | eqtr3d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( norm ‘ 𝑊 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) |
| 50 | 20 | eqcomd | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑊 ) ) |
| 51 | 50 | fveq2d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( norm ‘ ( Scalar ‘ 𝑋 ) ) = ( norm ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 52 | 51 | fveq1d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) = ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) ) |
| 53 | 1 32 46 | subgnm2 | ⊢ ( ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑦 ∈ 𝑈 ) → ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) |
| 54 | 6 30 53 | syl2an2r | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) = ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) |
| 55 | 52 54 | oveq12d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑊 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑊 ) ‘ 𝑦 ) ) ) |
| 56 | 37 49 55 | 3eqtr4d | ⊢ ( ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑋 ) ) ) → ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) |
| 57 | 56 | ralrimivva | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) |
| 58 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 59 | eqid | ⊢ ( ·𝑠 ‘ 𝑋 ) = ( ·𝑠 ‘ 𝑋 ) | |
| 60 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 61 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) | |
| 62 | eqid | ⊢ ( norm ‘ ( Scalar ‘ 𝑋 ) ) = ( norm ‘ ( Scalar ‘ 𝑋 ) ) | |
| 63 | 58 46 59 60 61 62 | isnlm | ⊢ ( 𝑋 ∈ NrmMod ↔ ( ( 𝑋 ∈ NrmGrp ∧ 𝑋 ∈ LMod ∧ ( Scalar ‘ 𝑋 ) ∈ NrmRing ) ∧ ∀ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∀ 𝑦 ∈ ( Base ‘ 𝑋 ) ( ( norm ‘ 𝑋 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑋 ) 𝑦 ) ) = ( ( ( norm ‘ ( Scalar ‘ 𝑋 ) ) ‘ 𝑥 ) · ( ( norm ‘ 𝑋 ) ‘ 𝑦 ) ) ) ) |
| 64 | 17 57 63 | sylanbrc | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |