This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnlm.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| lssnlm.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssnvc | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnlm.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | lssnlm.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | nvcnlm | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ NrmMod ) | |
| 4 | 1 2 | lssnlm | ⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmMod ) |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 7 | 1 6 | resssca | ⊢ ( 𝑈 ∈ 𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) ) |
| 9 | nvclvec | ⊢ ( 𝑊 ∈ NrmVec → 𝑊 ∈ LVec ) | |
| 10 | 6 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 11 | 9 10 | syl | ⊢ ( 𝑊 ∈ NrmVec → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
| 13 | 8 12 | eqeltrrd | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → ( Scalar ‘ 𝑋 ) ∈ DivRing ) |
| 14 | eqid | ⊢ ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 ) | |
| 15 | 14 | isnvc2 | ⊢ ( 𝑋 ∈ NrmVec ↔ ( 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) ∈ DivRing ) ) |
| 16 | 5 13 15 | sylanbrc | ⊢ ( ( 𝑊 ∈ NrmVec ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ NrmVec ) |