This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subgngp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| Assertion | subgngp | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subgngp.h | ⊢ 𝐻 = ( 𝐺 ↾s 𝐴 ) | |
| 2 | 1 | subggrp | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ∈ Grp ) |
| 3 | 2 | adantl | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ Grp ) |
| 4 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 5 | ressms | ⊢ ( ( 𝐺 ∈ MetSp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐺 ↾s 𝐴 ) ∈ MetSp ) |
| 7 | 1 6 | eqeltrid | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ MetSp ) |
| 8 | simplr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) | |
| 9 | simprl | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) | |
| 10 | 1 | subgbas | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 = ( Base ‘ 𝐻 ) ) |
| 12 | 9 11 | eleqtrrd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ 𝐴 ) |
| 13 | simprr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐻 ) ) | |
| 14 | 13 11 | eleqtrrd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ 𝐴 ) |
| 15 | eqid | ⊢ ( -g ‘ 𝐺 ) = ( -g ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( -g ‘ 𝐻 ) = ( -g ‘ 𝐻 ) | |
| 17 | 15 1 16 | subgsub | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
| 18 | 8 12 14 17 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) |
| 19 | 18 | fveq2d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 21 | 1 20 | ressds | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
| 22 | 21 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( dist ‘ 𝐺 ) = ( dist ‘ 𝐻 ) ) |
| 23 | 22 | oveqd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) ) |
| 24 | simpll | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐺 ∈ NrmGrp ) | |
| 25 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 26 | 25 | subgss | ⊢ ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝐴 ⊆ ( Base ‘ 𝐺 ) ) |
| 28 | 27 12 | sseldd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐺 ) ) |
| 29 | 27 14 | sseldd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐺 ) ) |
| 30 | eqid | ⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) | |
| 31 | 30 25 15 20 | ngpds | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝑥 ∈ ( Base ‘ 𝐺 ) ∧ 𝑦 ∈ ( Base ‘ 𝐺 ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 32 | 24 28 29 31 | syl3anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐺 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 33 | 23 32 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐺 ) 𝑦 ) ) ) |
| 34 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 35 | 34 16 | grpsubcl | ⊢ ( ( 𝐻 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 36 | 35 | 3expb | ⊢ ( ( 𝐻 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 37 | 3 36 | sylan | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ ( Base ‘ 𝐻 ) ) |
| 38 | 37 11 | eleqtrrd | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) |
| 39 | eqid | ⊢ ( norm ‘ 𝐻 ) = ( norm ‘ 𝐻 ) | |
| 40 | 1 30 39 | subgnm2 | ⊢ ( ( 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ∈ 𝐴 ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 41 | 8 38 40 | syl2anc | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) = ( ( norm ‘ 𝐺 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 42 | 19 33 41 | 3eqtr4d | ⊢ ( ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝐻 ) ∧ 𝑦 ∈ ( Base ‘ 𝐻 ) ) ) → ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 43 | 42 | ralrimivva | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) |
| 44 | eqid | ⊢ ( dist ‘ 𝐻 ) = ( dist ‘ 𝐻 ) | |
| 45 | 39 16 44 34 | isngp3 | ⊢ ( 𝐻 ∈ NrmGrp ↔ ( 𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐻 ) ∀ 𝑦 ∈ ( Base ‘ 𝐻 ) ( 𝑥 ( dist ‘ 𝐻 ) 𝑦 ) = ( ( norm ‘ 𝐻 ) ‘ ( 𝑥 ( -g ‘ 𝐻 ) 𝑦 ) ) ) ) |
| 46 | 3 7 43 45 | syl3anbrc | ⊢ ( ( 𝐺 ∈ NrmGrp ∧ 𝐴 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝐻 ∈ NrmGrp ) |