This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace of a normed module is a normed module. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssnlm.x | |- X = ( W |`s U ) |
|
| lssnlm.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssnlm | |- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssnlm.x | |- X = ( W |`s U ) |
|
| 2 | lssnlm.s | |- S = ( LSubSp ` W ) |
|
| 3 | nlmngp | |- ( W e. NrmMod -> W e. NrmGrp ) |
|
| 4 | nlmlmod | |- ( W e. NrmMod -> W e. LMod ) |
|
| 5 | 2 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 6 | 4 5 | sylan | |- ( ( W e. NrmMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 7 | 1 | subgngp | |- ( ( W e. NrmGrp /\ U e. ( SubGrp ` W ) ) -> X e. NrmGrp ) |
| 8 | 3 6 7 | syl2an2r | |- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmGrp ) |
| 9 | 1 2 | lsslmod | |- ( ( W e. LMod /\ U e. S ) -> X e. LMod ) |
| 10 | 4 9 | sylan | |- ( ( W e. NrmMod /\ U e. S ) -> X e. LMod ) |
| 11 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 12 | 1 11 | resssca | |- ( U e. S -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 13 | 12 | adantl | |- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 14 | 11 | nlmnrg | |- ( W e. NrmMod -> ( Scalar ` W ) e. NrmRing ) |
| 15 | 14 | adantr | |- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` W ) e. NrmRing ) |
| 16 | 13 15 | eqeltrrd | |- ( ( W e. NrmMod /\ U e. S ) -> ( Scalar ` X ) e. NrmRing ) |
| 17 | 8 10 16 | 3jca | |- ( ( W e. NrmMod /\ U e. S ) -> ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) ) |
| 18 | simpll | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. NrmMod ) |
|
| 19 | simprl | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` X ) ) ) |
|
| 20 | 13 | adantr | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 21 | 20 | fveq2d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
| 22 | 19 21 | eleqtrrd | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> x e. ( Base ` ( Scalar ` W ) ) ) |
| 23 | 6 | adantr | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. ( SubGrp ` W ) ) |
| 24 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 25 | 24 | subgss | |- ( U e. ( SubGrp ` W ) -> U C_ ( Base ` W ) ) |
| 26 | 23 25 | syl | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U C_ ( Base ` W ) ) |
| 27 | simprr | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` X ) ) |
|
| 28 | 1 | subgbas | |- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
| 29 | 23 28 | syl | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U = ( Base ` X ) ) |
| 30 | 27 29 | eleqtrrd | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. U ) |
| 31 | 26 30 | sseldd | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> y e. ( Base ` W ) ) |
| 32 | eqid | |- ( norm ` W ) = ( norm ` W ) |
|
| 33 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 34 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 35 | eqid | |- ( norm ` ( Scalar ` W ) ) = ( norm ` ( Scalar ` W ) ) |
|
| 36 | 24 32 33 11 34 35 | nmvs | |- ( ( W e. NrmMod /\ x e. ( Base ` ( Scalar ` W ) ) /\ y e. ( Base ` W ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
| 37 | 18 22 31 36 | syl3anc | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
| 38 | simplr | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> U e. S ) |
|
| 39 | 1 33 | ressvsca | |- ( U e. S -> ( .s ` W ) = ( .s ` X ) ) |
| 40 | 38 39 | syl | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( .s ` W ) = ( .s ` X ) ) |
| 41 | 40 | oveqd | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) = ( x ( .s ` X ) y ) ) |
| 42 | 41 | fveq2d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) ) |
| 43 | 4 | ad2antrr | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> W e. LMod ) |
| 44 | 11 33 34 2 | lssvscl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` W ) ) /\ y e. U ) ) -> ( x ( .s ` W ) y ) e. U ) |
| 45 | 43 38 22 30 44 | syl22anc | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( x ( .s ` W ) y ) e. U ) |
| 46 | eqid | |- ( norm ` X ) = ( norm ` X ) |
|
| 47 | 1 32 46 | subgnm2 | |- ( ( U e. ( SubGrp ` W ) /\ ( x ( .s ` W ) y ) e. U ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
| 48 | 6 45 47 | syl2an2r | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` W ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
| 49 | 42 48 | eqtr3d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( norm ` W ) ` ( x ( .s ` W ) y ) ) ) |
| 50 | 20 | eqcomd | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( Scalar ` X ) = ( Scalar ` W ) ) |
| 51 | 50 | fveq2d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` W ) ) ) |
| 52 | 51 | fveq1d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` ( Scalar ` X ) ) ` x ) = ( ( norm ` ( Scalar ` W ) ) ` x ) ) |
| 53 | 1 32 46 | subgnm2 | |- ( ( U e. ( SubGrp ` W ) /\ y e. U ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) |
| 54 | 6 30 53 | syl2an2r | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` y ) = ( ( norm ` W ) ` y ) ) |
| 55 | 52 54 | oveq12d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) = ( ( ( norm ` ( Scalar ` W ) ) ` x ) x. ( ( norm ` W ) ` y ) ) ) |
| 56 | 37 49 55 | 3eqtr4d | |- ( ( ( W e. NrmMod /\ U e. S ) /\ ( x e. ( Base ` ( Scalar ` X ) ) /\ y e. ( Base ` X ) ) ) -> ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) |
| 57 | 56 | ralrimivva | |- ( ( W e. NrmMod /\ U e. S ) -> A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) |
| 58 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 59 | eqid | |- ( .s ` X ) = ( .s ` X ) |
|
| 60 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 61 | eqid | |- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
|
| 62 | eqid | |- ( norm ` ( Scalar ` X ) ) = ( norm ` ( Scalar ` X ) ) |
|
| 63 | 58 46 59 60 61 62 | isnlm | |- ( X e. NrmMod <-> ( ( X e. NrmGrp /\ X e. LMod /\ ( Scalar ` X ) e. NrmRing ) /\ A. x e. ( Base ` ( Scalar ` X ) ) A. y e. ( Base ` X ) ( ( norm ` X ) ` ( x ( .s ` X ) y ) ) = ( ( ( norm ` ( Scalar ` X ) ) ` x ) x. ( ( norm ` X ) ` y ) ) ) ) |
| 64 | 17 57 63 | sylanbrc | |- ( ( W e. NrmMod /\ U e. S ) -> X e. NrmMod ) |