This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | lsmsubm | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 2 | lsmsubg.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | submrcl | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ Mnd ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝐺 ∈ Mnd ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 6 | 5 | submss | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 8 | 5 | submss | ⊢ ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 10 | 5 1 | lsmssv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 11 | 4 7 9 10 | syl3anc | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 12 | simp2 | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 13 | 5 1 | lsmub1x | ⊢ ( ( 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 14 | 7 12 13 | syl2anc | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → 𝑇 ⊆ ( 𝑇 ⊕ 𝑈 ) ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 16 | 15 | subm0cl | ⊢ ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑇 ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑇 ) |
| 18 | 14 17 | sseldd | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 0g ‘ 𝐺 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 19 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 20 | 5 19 1 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 21 | 4 7 9 20 | syl3anc | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑎 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ) ) |
| 22 | 5 19 1 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) |
| 23 | 4 7 9 22 | syl3anc | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑏 ∈ 𝑇 ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) |
| 24 | 21 23 | anbi12d | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) ↔ ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑏 ∈ 𝑇 ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) ) |
| 25 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑇 ( ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ↔ ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑏 ∈ 𝑇 ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) | |
| 26 | reeanv | ⊢ ( ∃ 𝑐 ∈ 𝑈 ∃ 𝑑 ∈ 𝑈 ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ↔ ( ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) | |
| 27 | 4 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝐺 ∈ Mnd ) |
| 28 | 7 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 29 | simprll | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑎 ∈ 𝑇 ) | |
| 30 | 28 29 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑎 ∈ ( Base ‘ 𝐺 ) ) |
| 31 | simprlr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑏 ∈ 𝑇 ) | |
| 32 | 28 31 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑏 ∈ ( Base ‘ 𝐺 ) ) |
| 33 | 9 | adantr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 34 | simprrl | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑐 ∈ 𝑈 ) | |
| 35 | 33 34 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑐 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | simprrr | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑑 ∈ 𝑈 ) | |
| 37 | 33 36 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑑 ∈ ( Base ‘ 𝐺 ) ) |
| 38 | simpl3 | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) | |
| 39 | 38 31 | sseldd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑏 ∈ ( 𝑍 ‘ 𝑈 ) ) |
| 40 | 19 2 | cntzi | ⊢ ( ( 𝑏 ∈ ( 𝑍 ‘ 𝑈 ) ∧ 𝑐 ∈ 𝑈 ) → ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) = ( 𝑐 ( +g ‘ 𝐺 ) 𝑏 ) ) |
| 41 | 39 34 40 | syl2anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( 𝑏 ( +g ‘ 𝐺 ) 𝑐 ) = ( 𝑐 ( +g ‘ 𝐺 ) 𝑏 ) ) |
| 42 | 5 19 27 30 32 35 37 41 | mnd4g | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ) = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) |
| 43 | simpl1 | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 44 | 19 | submcl | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑇 ) |
| 45 | 43 29 31 44 | syl3anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑇 ) |
| 46 | simpl2 | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 47 | 19 | submcl | ⊢ ( ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) → ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ∈ 𝑈 ) |
| 48 | 46 34 36 47 | syl3anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ∈ 𝑈 ) |
| 49 | 5 19 1 | lsmelvalix | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) ∧ ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ∈ 𝑇 ∧ ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ∈ 𝑈 ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 50 | 27 28 33 45 48 49 | syl32anc | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑏 ) ( +g ‘ 𝐺 ) ( 𝑐 ( +g ‘ 𝐺 ) 𝑑 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 51 | 42 50 | eqeltrrd | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 52 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ) | |
| 53 | 52 | eleq1d | ⊢ ( ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ( ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ( +g ‘ 𝐺 ) ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 54 | 51 53 | syl5ibrcom | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) ) → ( ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 55 | 54 | anassrs | ⊢ ( ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ) ∧ ( 𝑐 ∈ 𝑈 ∧ 𝑑 ∈ 𝑈 ) ) → ( ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 56 | 55 | rexlimdvva | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ) → ( ∃ 𝑐 ∈ 𝑈 ∃ 𝑑 ∈ 𝑈 ( 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 57 | 26 56 | biimtrrid | ⊢ ( ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) ∧ ( 𝑎 ∈ 𝑇 ∧ 𝑏 ∈ 𝑇 ) ) → ( ( ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 58 | 57 | rexlimdvva | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑏 ∈ 𝑇 ( ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 59 | 25 58 | biimtrrid | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( ∃ 𝑎 ∈ 𝑇 ∃ 𝑐 ∈ 𝑈 𝑥 = ( 𝑎 ( +g ‘ 𝐺 ) 𝑐 ) ∧ ∃ 𝑏 ∈ 𝑇 ∃ 𝑑 ∈ 𝑈 𝑦 = ( 𝑏 ( +g ‘ 𝐺 ) 𝑑 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 60 | 24 59 | sylbid | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∧ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) |
| 61 | 60 | ralrimivv | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 62 | 5 15 19 | issubm | ⊢ ( 𝐺 ∈ Mnd → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ ( 𝑇 ⊕ 𝑈 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 63 | 4 62 | syl | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ↔ ( ( 𝑇 ⊕ 𝑈 ) ⊆ ( Base ‘ 𝐺 ) ∧ ( 0g ‘ 𝐺 ) ∈ ( 𝑇 ⊕ 𝑈 ) ∧ ∀ 𝑥 ∈ ( 𝑇 ⊕ 𝑈 ) ∀ 𝑦 ∈ ( 𝑇 ⊕ 𝑈 ) ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) ) ) |
| 64 | 11 18 61 63 | mpbir3and | ⊢ ( ( 𝑇 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑇 ⊆ ( 𝑍 ‘ 𝑈 ) ) → ( 𝑇 ⊕ 𝑈 ) ∈ ( SubMnd ‘ 𝐺 ) ) |