This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum membership (for a group or vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmelvalix | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | eqid | ⊢ ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 ) | |
| 5 | rspceov | ⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ∧ ( 𝑋 + 𝑌 ) = ( 𝑋 + 𝑌 ) ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) | |
| 6 | 4 5 | mp3an3 | ⊢ ( ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) |
| 7 | 1 2 3 | lsmelvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) ) |
| 8 | 7 | biimpar | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ∃ 𝑥 ∈ 𝑇 ∃ 𝑦 ∈ 𝑈 ( 𝑋 + 𝑌 ) = ( 𝑥 + 𝑦 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |
| 9 | 6 8 | sylan2 | ⊢ ( ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑈 ) ) → ( 𝑋 + 𝑌 ) ∈ ( 𝑇 ⊕ 𝑈 ) ) |