This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sum of two commuting submonoids is a submonoid. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| lsmsubg.z | |- Z = ( Cntz ` G ) |
||
| Assertion | lsmsubm | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmsubg.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | lsmsubg.z | |- Z = ( Cntz ` G ) |
|
| 3 | submrcl | |- ( T e. ( SubMnd ` G ) -> G e. Mnd ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> G e. Mnd ) |
| 5 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 6 | 5 | submss | |- ( T e. ( SubMnd ` G ) -> T C_ ( Base ` G ) ) |
| 7 | 6 | 3ad2ant1 | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( Base ` G ) ) |
| 8 | 5 | submss | |- ( U e. ( SubMnd ` G ) -> U C_ ( Base ` G ) ) |
| 9 | 8 | 3ad2ant2 | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> U C_ ( Base ` G ) ) |
| 10 | 5 1 | lsmssv | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 11 | 4 7 9 10 | syl3anc | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) C_ ( Base ` G ) ) |
| 12 | simp2 | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubMnd ` G ) ) |
|
| 13 | 5 1 | lsmub1x | |- ( ( T C_ ( Base ` G ) /\ U e. ( SubMnd ` G ) ) -> T C_ ( T .(+) U ) ) |
| 14 | 7 12 13 | syl2anc | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( T .(+) U ) ) |
| 15 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 16 | 15 | subm0cl | |- ( T e. ( SubMnd ` G ) -> ( 0g ` G ) e. T ) |
| 17 | 16 | 3ad2ant1 | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( 0g ` G ) e. T ) |
| 18 | 14 17 | sseldd | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( 0g ` G ) e. ( T .(+) U ) ) |
| 19 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 20 | 5 19 1 | lsmelvalx | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. c e. U x = ( a ( +g ` G ) c ) ) ) |
| 21 | 4 7 9 20 | syl3anc | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. c e. U x = ( a ( +g ` G ) c ) ) ) |
| 22 | 5 19 1 | lsmelvalx | |- ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( y e. ( T .(+) U ) <-> E. b e. T E. d e. U y = ( b ( +g ` G ) d ) ) ) |
| 23 | 4 7 9 22 | syl3anc | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( y e. ( T .(+) U ) <-> E. b e. T E. d e. U y = ( b ( +g ` G ) d ) ) ) |
| 24 | 21 23 | anbi12d | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) <-> ( E. a e. T E. c e. U x = ( a ( +g ` G ) c ) /\ E. b e. T E. d e. U y = ( b ( +g ` G ) d ) ) ) ) |
| 25 | reeanv | |- ( E. a e. T E. b e. T ( E. c e. U x = ( a ( +g ` G ) c ) /\ E. d e. U y = ( b ( +g ` G ) d ) ) <-> ( E. a e. T E. c e. U x = ( a ( +g ` G ) c ) /\ E. b e. T E. d e. U y = ( b ( +g ` G ) d ) ) ) |
|
| 26 | reeanv | |- ( E. c e. U E. d e. U ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) <-> ( E. c e. U x = ( a ( +g ` G ) c ) /\ E. d e. U y = ( b ( +g ` G ) d ) ) ) |
|
| 27 | 4 | adantr | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> G e. Mnd ) |
| 28 | 7 | adantr | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> T C_ ( Base ` G ) ) |
| 29 | simprll | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> a e. T ) |
|
| 30 | 28 29 | sseldd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> a e. ( Base ` G ) ) |
| 31 | simprlr | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> b e. T ) |
|
| 32 | 28 31 | sseldd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> b e. ( Base ` G ) ) |
| 33 | 9 | adantr | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> U C_ ( Base ` G ) ) |
| 34 | simprrl | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> c e. U ) |
|
| 35 | 33 34 | sseldd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> c e. ( Base ` G ) ) |
| 36 | simprrr | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> d e. U ) |
|
| 37 | 33 36 | sseldd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> d e. ( Base ` G ) ) |
| 38 | simpl3 | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> T C_ ( Z ` U ) ) |
|
| 39 | 38 31 | sseldd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> b e. ( Z ` U ) ) |
| 40 | 19 2 | cntzi | |- ( ( b e. ( Z ` U ) /\ c e. U ) -> ( b ( +g ` G ) c ) = ( c ( +g ` G ) b ) ) |
| 41 | 39 34 40 | syl2anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( b ( +g ` G ) c ) = ( c ( +g ` G ) b ) ) |
| 42 | 5 19 27 30 32 35 37 41 | mnd4g | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( ( a ( +g ` G ) b ) ( +g ` G ) ( c ( +g ` G ) d ) ) = ( ( a ( +g ` G ) c ) ( +g ` G ) ( b ( +g ` G ) d ) ) ) |
| 43 | simpl1 | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> T e. ( SubMnd ` G ) ) |
|
| 44 | 19 | submcl | |- ( ( T e. ( SubMnd ` G ) /\ a e. T /\ b e. T ) -> ( a ( +g ` G ) b ) e. T ) |
| 45 | 43 29 31 44 | syl3anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( a ( +g ` G ) b ) e. T ) |
| 46 | simpl2 | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> U e. ( SubMnd ` G ) ) |
|
| 47 | 19 | submcl | |- ( ( U e. ( SubMnd ` G ) /\ c e. U /\ d e. U ) -> ( c ( +g ` G ) d ) e. U ) |
| 48 | 46 34 36 47 | syl3anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( c ( +g ` G ) d ) e. U ) |
| 49 | 5 19 1 | lsmelvalix | |- ( ( ( G e. Mnd /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) /\ ( ( a ( +g ` G ) b ) e. T /\ ( c ( +g ` G ) d ) e. U ) ) -> ( ( a ( +g ` G ) b ) ( +g ` G ) ( c ( +g ` G ) d ) ) e. ( T .(+) U ) ) |
| 50 | 27 28 33 45 48 49 | syl32anc | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( ( a ( +g ` G ) b ) ( +g ` G ) ( c ( +g ` G ) d ) ) e. ( T .(+) U ) ) |
| 51 | 42 50 | eqeltrrd | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( ( a ( +g ` G ) c ) ( +g ` G ) ( b ( +g ` G ) d ) ) e. ( T .(+) U ) ) |
| 52 | oveq12 | |- ( ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) = ( ( a ( +g ` G ) c ) ( +g ` G ) ( b ( +g ` G ) d ) ) ) |
|
| 53 | 52 | eleq1d | |- ( ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) -> ( ( x ( +g ` G ) y ) e. ( T .(+) U ) <-> ( ( a ( +g ` G ) c ) ( +g ` G ) ( b ( +g ` G ) d ) ) e. ( T .(+) U ) ) ) |
| 54 | 51 53 | syl5ibrcom | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( ( a e. T /\ b e. T ) /\ ( c e. U /\ d e. U ) ) ) -> ( ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 55 | 54 | anassrs | |- ( ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. T ) ) /\ ( c e. U /\ d e. U ) ) -> ( ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 56 | 55 | rexlimdvva | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. T ) ) -> ( E. c e. U E. d e. U ( x = ( a ( +g ` G ) c ) /\ y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 57 | 26 56 | biimtrrid | |- ( ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. T ) ) -> ( ( E. c e. U x = ( a ( +g ` G ) c ) /\ E. d e. U y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 58 | 57 | rexlimdvva | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. T ( E. c e. U x = ( a ( +g ` G ) c ) /\ E. d e. U y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 59 | 25 58 | biimtrrid | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( ( E. a e. T E. c e. U x = ( a ( +g ` G ) c ) /\ E. b e. T E. d e. U y = ( b ( +g ` G ) d ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 60 | 24 59 | sylbid | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( ( x e. ( T .(+) U ) /\ y e. ( T .(+) U ) ) -> ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) |
| 61 | 60 | ralrimivv | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> A. x e. ( T .(+) U ) A. y e. ( T .(+) U ) ( x ( +g ` G ) y ) e. ( T .(+) U ) ) |
| 62 | 5 15 19 | issubm | |- ( G e. Mnd -> ( ( T .(+) U ) e. ( SubMnd ` G ) <-> ( ( T .(+) U ) C_ ( Base ` G ) /\ ( 0g ` G ) e. ( T .(+) U ) /\ A. x e. ( T .(+) U ) A. y e. ( T .(+) U ) ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) ) |
| 63 | 4 62 | syl | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( ( T .(+) U ) e. ( SubMnd ` G ) <-> ( ( T .(+) U ) C_ ( Base ` G ) /\ ( 0g ` G ) e. ( T .(+) U ) /\ A. x e. ( T .(+) U ) A. y e. ( T .(+) U ) ( x ( +g ` G ) y ) e. ( T .(+) U ) ) ) ) |
| 64 | 11 18 61 63 | mpbir3and | |- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |