This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum membership (for a group or vector space). Extended domain version of lsmelval . (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | ||
| lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmelvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmfval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | lsmfval.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 4 | 1 2 3 | lsmvalx | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑦 ∈ 𝑇 , 𝑧 ∈ 𝑈 ↦ ( 𝑦 + 𝑧 ) ) ) |
| 5 | 4 | eleq2d | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ 𝑋 ∈ ran ( 𝑦 ∈ 𝑇 , 𝑧 ∈ 𝑈 ↦ ( 𝑦 + 𝑧 ) ) ) ) |
| 6 | eqid | ⊢ ( 𝑦 ∈ 𝑇 , 𝑧 ∈ 𝑈 ↦ ( 𝑦 + 𝑧 ) ) = ( 𝑦 ∈ 𝑇 , 𝑧 ∈ 𝑈 ↦ ( 𝑦 + 𝑧 ) ) | |
| 7 | ovex | ⊢ ( 𝑦 + 𝑧 ) ∈ V | |
| 8 | 6 7 | elrnmpo | ⊢ ( 𝑋 ∈ ran ( 𝑦 ∈ 𝑇 , 𝑧 ∈ 𝑈 ↦ ( 𝑦 + 𝑧 ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) |
| 9 | 5 8 | bitrdi | ⊢ ( ( 𝐺 ∈ 𝑉 ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) ) |