This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum is a subset of the base. (Contributed by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmssv | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmless2.v | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | lsmless2.s | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 4 | 1 3 2 | lsmvalx | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) = ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝐺 ∈ Mnd ) | |
| 6 | simp2 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) | |
| 7 | 6 | sselda | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ 𝐵 ) |
| 8 | 7 | adantrr | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑥 ∈ 𝐵 ) |
| 9 | simp3 | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → 𝑈 ⊆ 𝐵 ) | |
| 10 | 9 | sselda | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ 𝑦 ∈ 𝑈 ) → 𝑦 ∈ 𝐵 ) |
| 11 | 10 | adantrl | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → 𝑦 ∈ 𝐵 ) |
| 12 | 1 3 | mndcl | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 13 | 5 8 11 12 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) ∧ ( 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈 ) ) → ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 14 | 13 | ralrimivva | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ) |
| 15 | eqid | ⊢ ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) = ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) | |
| 16 | 15 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑇 ∀ 𝑦 ∈ 𝑈 ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ∈ 𝐵 ↔ ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 ) |
| 17 | 14 16 | sylib | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) : ( 𝑇 × 𝑈 ) ⟶ 𝐵 ) |
| 18 | 17 | frnd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ran ( 𝑥 ∈ 𝑇 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) ) ⊆ 𝐵 ) |
| 19 | 4 18 | eqsstrd | ⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑇 ⊆ 𝐵 ∧ 𝑈 ⊆ 𝐵 ) → ( 𝑇 ⊕ 𝑈 ) ⊆ 𝐵 ) |