This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of Kalmbach p. 153. ( spansncvi analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lsmcv.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| lsmcv.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | ||
| lsmcv.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | ||
| lsmcv.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | ||
| lsmcv.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) | ||
| lsmcv.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | ||
| lsmcv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| Assertion | lsmcv | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcv.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lsmcv.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | lsmcv.n | ⊢ 𝑁 = ( LSpan ‘ 𝑊 ) | |
| 4 | lsmcv.p | ⊢ ⊕ = ( LSSum ‘ 𝑊 ) | |
| 5 | lsmcv.w | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) | |
| 6 | lsmcv.t | ⊢ ( 𝜑 → 𝑇 ∈ 𝑆 ) | |
| 7 | lsmcv.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑆 ) | |
| 8 | lsmcv.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 9 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) | |
| 10 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ⊊ 𝑈 ) | |
| 11 | pssss | ⊢ ( 𝑇 ⊊ 𝑈 → 𝑇 ⊆ 𝑈 ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ⊆ 𝑈 ) |
| 13 | pssnel | ⊢ ( 𝑇 ⊊ 𝑈 → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) | |
| 14 | 10 13 | syl | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ∃ 𝑥 ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) |
| 15 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) | |
| 16 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑥 ∈ 𝑈 ) | |
| 17 | 15 16 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |
| 18 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 19 | 5 18 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 20 | 2 | lsssssubg | ⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 21 | 19 20 | syl | ⊢ ( 𝜑 → 𝑆 ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 22 | 21 6 | sseldd | ⊢ ( 𝜑 → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 23 | 1 2 3 | lspsncl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 24 | 19 8 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 25 | 21 24 | sseldd | ⊢ ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 26 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 27 | 26 4 | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 28 | 22 25 27 | syl2anc | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( 𝑥 ∈ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) |
| 31 | 17 30 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) |
| 32 | simp1rr | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ¬ 𝑥 ∈ 𝑇 ) | |
| 33 | simp2l | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑇 ) | |
| 34 | oveq2 | ⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) | |
| 35 | 34 | eqeq2d | ⊢ ( 𝑧 = ( 0g ‘ 𝑊 ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ↔ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) ) |
| 36 | 35 | biimpac | ⊢ ( ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∧ 𝑧 = ( 0g ‘ 𝑊 ) ) → 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 37 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LMod ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LMod ) |
| 39 | 6 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ∈ 𝑆 ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑇 ∈ 𝑆 ) |
| 41 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑦 ∈ 𝑇 ) | |
| 42 | 1 2 | lssel | ⊢ ( ( 𝑇 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑉 ) |
| 43 | 40 41 42 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑦 ∈ 𝑉 ) |
| 44 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 45 | 1 26 44 | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑦 ∈ 𝑉 ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 46 | 38 43 45 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 𝑦 ) |
| 47 | 46 | eqeq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 48 | 47 | biimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) |
| 49 | 48 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) ) |
| 50 | 36 49 | syl7 | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∧ 𝑧 = ( 0g ‘ 𝑊 ) ) → 𝑥 = 𝑦 ) ) ) |
| 51 | 50 | exp4a | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 = 𝑦 ) ) ) ) |
| 52 | 51 | 3imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 = 𝑦 ) ) |
| 53 | eleq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑇 ↔ 𝑦 ∈ 𝑇 ) ) | |
| 54 | 53 | biimparc | ⊢ ( ( 𝑦 ∈ 𝑇 ∧ 𝑥 = 𝑦 ) → 𝑥 ∈ 𝑇 ) |
| 55 | 33 52 54 | syl6an | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑧 = ( 0g ‘ 𝑊 ) → 𝑥 ∈ 𝑇 ) ) |
| 56 | 55 | necon3bd | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ¬ 𝑥 ∈ 𝑇 → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) ) |
| 57 | 32 56 | mpd | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) |
| 58 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑊 ∈ LVec ) |
| 59 | 58 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → 𝑊 ∈ LVec ) |
| 60 | 59 | 3ad2ant1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ LVec ) |
| 61 | lmodabl | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) | |
| 62 | 18 61 | syl | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ Abel ) |
| 63 | 60 62 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ Abel ) |
| 64 | simp1l1 | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝜑 ) | |
| 65 | 64 6 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑇 ∈ 𝑆 ) |
| 66 | 65 33 42 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑉 ) |
| 67 | 60 18 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑊 ∈ LMod ) |
| 68 | 64 8 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑋 ∈ 𝑉 ) |
| 69 | 67 68 23 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ) |
| 70 | simp2r | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 71 | 1 2 | lssel | ⊢ ( ( ( 𝑁 ‘ { 𝑋 } ) ∈ 𝑆 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → 𝑧 ∈ 𝑉 ) |
| 72 | 69 70 71 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ 𝑉 ) |
| 73 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 74 | 1 26 73 | ablpncan2 | ⊢ ( ( 𝑊 ∈ Abel ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉 ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) = 𝑧 ) |
| 75 | 63 66 72 74 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) = 𝑧 ) |
| 76 | 64 7 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑈 ∈ 𝑆 ) |
| 77 | simp3 | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) | |
| 78 | simp1rl | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑥 ∈ 𝑈 ) | |
| 79 | 77 78 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑈 ) |
| 80 | simp1l2 | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑇 ⊊ 𝑈 ) | |
| 81 | 11 | sselda | ⊢ ( ( 𝑇 ⊊ 𝑈 ∧ 𝑦 ∈ 𝑇 ) → 𝑦 ∈ 𝑈 ) |
| 82 | 80 33 81 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑦 ∈ 𝑈 ) |
| 83 | 73 2 | lssvsubcl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) ∧ ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ∈ 𝑈 ∧ 𝑦 ∈ 𝑈 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 84 | 67 76 79 82 83 | syl22anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( -g ‘ 𝑊 ) 𝑦 ) ∈ 𝑈 ) |
| 85 | 75 84 | eqeltrrd | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → 𝑧 ∈ 𝑈 ) |
| 86 | 60 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑊 ∈ LVec ) |
| 87 | 64 | 3ad2ant1 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝜑 ) |
| 88 | 87 8 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑋 ∈ 𝑉 ) |
| 89 | simp12r | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) | |
| 90 | simp2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ≠ ( 0g ‘ 𝑊 ) ) | |
| 91 | 1 44 3 86 88 89 90 | lspsneleq | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑧 } ) = ( 𝑁 ‘ { 𝑋 } ) ) |
| 92 | 86 18 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑊 ∈ LMod ) |
| 93 | 87 7 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑈 ∈ 𝑆 ) |
| 94 | simp3 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → 𝑧 ∈ 𝑈 ) | |
| 95 | 2 3 92 93 94 | ellspsn5 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑧 } ) ⊆ 𝑈 ) |
| 96 | 91 95 | eqsstrrd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ∧ 𝑧 ≠ ( 0g ‘ 𝑊 ) ∧ 𝑧 ∈ 𝑈 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 97 | 57 85 96 | mpd3an23 | ⊢ ( ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) ∧ ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ∧ 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 98 | 97 | 3exp | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ( 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) ) → ( 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) ) |
| 99 | 98 | rexlimdvv | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ ( 𝑁 ‘ { 𝑋 } ) 𝑥 = ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ) |
| 100 | 31 99 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) ∧ ( 𝑥 ∈ 𝑈 ∧ ¬ 𝑥 ∈ 𝑇 ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 101 | 14 100 | exlimddv | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) |
| 102 | 21 7 | sseldd | ⊢ ( 𝜑 → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 103 | 4 | lsmlub | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 104 | 22 25 102 103 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 105 | 104 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( ( 𝑇 ⊆ 𝑈 ∧ ( 𝑁 ‘ { 𝑋 } ) ⊆ 𝑈 ) ↔ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) ) |
| 106 | 12 101 105 | mpbi2and | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ⊆ 𝑈 ) |
| 107 | 9 106 | eqssd | ⊢ ( ( 𝜑 ∧ 𝑇 ⊊ 𝑈 ∧ 𝑈 ⊆ ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) → 𝑈 = ( 𝑇 ⊕ ( 𝑁 ‘ { 𝑋 } ) ) ) |