This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of Kalmbach p. 153. ( spansncvi analog.) TODO: ugly proof; can it be shortened? (Contributed by NM, 2-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmcv.v | |- V = ( Base ` W ) |
|
| lsmcv.s | |- S = ( LSubSp ` W ) |
||
| lsmcv.n | |- N = ( LSpan ` W ) |
||
| lsmcv.p | |- .(+) = ( LSSum ` W ) |
||
| lsmcv.w | |- ( ph -> W e. LVec ) |
||
| lsmcv.t | |- ( ph -> T e. S ) |
||
| lsmcv.u | |- ( ph -> U e. S ) |
||
| lsmcv.x | |- ( ph -> X e. V ) |
||
| Assertion | lsmcv | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> U = ( T .(+) ( N ` { X } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcv.v | |- V = ( Base ` W ) |
|
| 2 | lsmcv.s | |- S = ( LSubSp ` W ) |
|
| 3 | lsmcv.n | |- N = ( LSpan ` W ) |
|
| 4 | lsmcv.p | |- .(+) = ( LSSum ` W ) |
|
| 5 | lsmcv.w | |- ( ph -> W e. LVec ) |
|
| 6 | lsmcv.t | |- ( ph -> T e. S ) |
|
| 7 | lsmcv.u | |- ( ph -> U e. S ) |
|
| 8 | lsmcv.x | |- ( ph -> X e. V ) |
|
| 9 | simp3 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> U C_ ( T .(+) ( N ` { X } ) ) ) |
|
| 10 | simp2 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> T C. U ) |
|
| 11 | pssss | |- ( T C. U -> T C_ U ) |
|
| 12 | 10 11 | syl | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> T C_ U ) |
| 13 | pssnel | |- ( T C. U -> E. x ( x e. U /\ -. x e. T ) ) |
|
| 14 | 10 13 | syl | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> E. x ( x e. U /\ -. x e. T ) ) |
| 15 | simpl3 | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> U C_ ( T .(+) ( N ` { X } ) ) ) |
|
| 16 | simprl | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> x e. U ) |
|
| 17 | 15 16 | sseldd | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> x e. ( T .(+) ( N ` { X } ) ) ) |
| 18 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 19 | 5 18 | syl | |- ( ph -> W e. LMod ) |
| 20 | 2 | lsssssubg | |- ( W e. LMod -> S C_ ( SubGrp ` W ) ) |
| 21 | 19 20 | syl | |- ( ph -> S C_ ( SubGrp ` W ) ) |
| 22 | 21 6 | sseldd | |- ( ph -> T e. ( SubGrp ` W ) ) |
| 23 | 1 2 3 | lspsncl | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. S ) |
| 24 | 19 8 23 | syl2anc | |- ( ph -> ( N ` { X } ) e. S ) |
| 25 | 21 24 | sseldd | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 26 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 27 | 26 4 | lsmelval | |- ( ( T e. ( SubGrp ` W ) /\ ( N ` { X } ) e. ( SubGrp ` W ) ) -> ( x e. ( T .(+) ( N ` { X } ) ) <-> E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) ) ) |
| 28 | 22 25 27 | syl2anc | |- ( ph -> ( x e. ( T .(+) ( N ` { X } ) ) <-> E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) ) ) |
| 29 | 28 | 3ad2ant1 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> ( x e. ( T .(+) ( N ` { X } ) ) <-> E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) ) ) |
| 30 | 29 | adantr | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( x e. ( T .(+) ( N ` { X } ) ) <-> E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) ) ) |
| 31 | 17 30 | mpbid | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) ) |
| 32 | simp1rr | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> -. x e. T ) |
|
| 33 | simp2l | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> y e. T ) |
|
| 34 | oveq2 | |- ( z = ( 0g ` W ) -> ( y ( +g ` W ) z ) = ( y ( +g ` W ) ( 0g ` W ) ) ) |
|
| 35 | 34 | eqeq2d | |- ( z = ( 0g ` W ) -> ( x = ( y ( +g ` W ) z ) <-> x = ( y ( +g ` W ) ( 0g ` W ) ) ) ) |
| 36 | 35 | biimpac | |- ( ( x = ( y ( +g ` W ) z ) /\ z = ( 0g ` W ) ) -> x = ( y ( +g ` W ) ( 0g ` W ) ) ) |
| 37 | 19 | 3ad2ant1 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> W e. LMod ) |
| 38 | 37 | ad2antrr | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> W e. LMod ) |
| 39 | 6 | 3ad2ant1 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> T e. S ) |
| 40 | 39 | ad2antrr | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> T e. S ) |
| 41 | simprl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> y e. T ) |
|
| 42 | 1 2 | lssel | |- ( ( T e. S /\ y e. T ) -> y e. V ) |
| 43 | 40 41 42 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> y e. V ) |
| 44 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 45 | 1 26 44 | lmod0vrid | |- ( ( W e. LMod /\ y e. V ) -> ( y ( +g ` W ) ( 0g ` W ) ) = y ) |
| 46 | 38 43 45 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> ( y ( +g ` W ) ( 0g ` W ) ) = y ) |
| 47 | 46 | eqeq2d | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> ( x = ( y ( +g ` W ) ( 0g ` W ) ) <-> x = y ) ) |
| 48 | 47 | biimpd | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) ) -> ( x = ( y ( +g ` W ) ( 0g ` W ) ) -> x = y ) ) |
| 49 | 48 | ex | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( ( y e. T /\ z e. ( N ` { X } ) ) -> ( x = ( y ( +g ` W ) ( 0g ` W ) ) -> x = y ) ) ) |
| 50 | 36 49 | syl7 | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( ( y e. T /\ z e. ( N ` { X } ) ) -> ( ( x = ( y ( +g ` W ) z ) /\ z = ( 0g ` W ) ) -> x = y ) ) ) |
| 51 | 50 | exp4a | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( ( y e. T /\ z e. ( N ` { X } ) ) -> ( x = ( y ( +g ` W ) z ) -> ( z = ( 0g ` W ) -> x = y ) ) ) ) |
| 52 | 51 | 3imp | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( z = ( 0g ` W ) -> x = y ) ) |
| 53 | eleq1 | |- ( x = y -> ( x e. T <-> y e. T ) ) |
|
| 54 | 53 | biimparc | |- ( ( y e. T /\ x = y ) -> x e. T ) |
| 55 | 33 52 54 | syl6an | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( z = ( 0g ` W ) -> x e. T ) ) |
| 56 | 55 | necon3bd | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( -. x e. T -> z =/= ( 0g ` W ) ) ) |
| 57 | 32 56 | mpd | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> z =/= ( 0g ` W ) ) |
| 58 | 5 | 3ad2ant1 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> W e. LVec ) |
| 59 | 58 | adantr | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> W e. LVec ) |
| 60 | 59 | 3ad2ant1 | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> W e. LVec ) |
| 61 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 62 | 18 61 | syl | |- ( W e. LVec -> W e. Abel ) |
| 63 | 60 62 | syl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> W e. Abel ) |
| 64 | simp1l1 | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ph ) |
|
| 65 | 64 6 | syl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> T e. S ) |
| 66 | 65 33 42 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> y e. V ) |
| 67 | 60 18 | syl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> W e. LMod ) |
| 68 | 64 8 | syl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> X e. V ) |
| 69 | 67 68 23 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( N ` { X } ) e. S ) |
| 70 | simp2r | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> z e. ( N ` { X } ) ) |
|
| 71 | 1 2 | lssel | |- ( ( ( N ` { X } ) e. S /\ z e. ( N ` { X } ) ) -> z e. V ) |
| 72 | 69 70 71 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> z e. V ) |
| 73 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 74 | 1 26 73 | ablpncan2 | |- ( ( W e. Abel /\ y e. V /\ z e. V ) -> ( ( y ( +g ` W ) z ) ( -g ` W ) y ) = z ) |
| 75 | 63 66 72 74 | syl3anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( ( y ( +g ` W ) z ) ( -g ` W ) y ) = z ) |
| 76 | 64 7 | syl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> U e. S ) |
| 77 | simp3 | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> x = ( y ( +g ` W ) z ) ) |
|
| 78 | simp1rl | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> x e. U ) |
|
| 79 | 77 78 | eqeltrrd | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( y ( +g ` W ) z ) e. U ) |
| 80 | simp1l2 | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> T C. U ) |
|
| 81 | 11 | sselda | |- ( ( T C. U /\ y e. T ) -> y e. U ) |
| 82 | 80 33 81 | syl2anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> y e. U ) |
| 83 | 73 2 | lssvsubcl | |- ( ( ( W e. LMod /\ U e. S ) /\ ( ( y ( +g ` W ) z ) e. U /\ y e. U ) ) -> ( ( y ( +g ` W ) z ) ( -g ` W ) y ) e. U ) |
| 84 | 67 76 79 82 83 | syl22anc | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( ( y ( +g ` W ) z ) ( -g ` W ) y ) e. U ) |
| 85 | 75 84 | eqeltrrd | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> z e. U ) |
| 86 | 60 | 3ad2ant1 | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> W e. LVec ) |
| 87 | 64 | 3ad2ant1 | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> ph ) |
| 88 | 87 8 | syl | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> X e. V ) |
| 89 | simp12r | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> z e. ( N ` { X } ) ) |
|
| 90 | simp2 | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> z =/= ( 0g ` W ) ) |
|
| 91 | 1 44 3 86 88 89 90 | lspsneleq | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> ( N ` { z } ) = ( N ` { X } ) ) |
| 92 | 86 18 | syl | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> W e. LMod ) |
| 93 | 87 7 | syl | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> U e. S ) |
| 94 | simp3 | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> z e. U ) |
|
| 95 | 2 3 92 93 94 | ellspsn5 | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> ( N ` { z } ) C_ U ) |
| 96 | 91 95 | eqsstrrd | |- ( ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) /\ z =/= ( 0g ` W ) /\ z e. U ) -> ( N ` { X } ) C_ U ) |
| 97 | 57 85 96 | mpd3an23 | |- ( ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) /\ ( y e. T /\ z e. ( N ` { X } ) ) /\ x = ( y ( +g ` W ) z ) ) -> ( N ` { X } ) C_ U ) |
| 98 | 97 | 3exp | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( ( y e. T /\ z e. ( N ` { X } ) ) -> ( x = ( y ( +g ` W ) z ) -> ( N ` { X } ) C_ U ) ) ) |
| 99 | 98 | rexlimdvv | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( E. y e. T E. z e. ( N ` { X } ) x = ( y ( +g ` W ) z ) -> ( N ` { X } ) C_ U ) ) |
| 100 | 31 99 | mpd | |- ( ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) /\ ( x e. U /\ -. x e. T ) ) -> ( N ` { X } ) C_ U ) |
| 101 | 14 100 | exlimddv | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> ( N ` { X } ) C_ U ) |
| 102 | 21 7 | sseldd | |- ( ph -> U e. ( SubGrp ` W ) ) |
| 103 | 4 | lsmlub | |- ( ( T e. ( SubGrp ` W ) /\ ( N ` { X } ) e. ( SubGrp ` W ) /\ U e. ( SubGrp ` W ) ) -> ( ( T C_ U /\ ( N ` { X } ) C_ U ) <-> ( T .(+) ( N ` { X } ) ) C_ U ) ) |
| 104 | 22 25 102 103 | syl3anc | |- ( ph -> ( ( T C_ U /\ ( N ` { X } ) C_ U ) <-> ( T .(+) ( N ` { X } ) ) C_ U ) ) |
| 105 | 104 | 3ad2ant1 | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> ( ( T C_ U /\ ( N ` { X } ) C_ U ) <-> ( T .(+) ( N ` { X } ) ) C_ U ) ) |
| 106 | 12 101 105 | mpbi2and | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> ( T .(+) ( N ` { X } ) ) C_ U ) |
| 107 | 9 106 | eqssd | |- ( ( ph /\ T C. U /\ U C_ ( T .(+) ( N ` { X } ) ) ) -> U = ( T .(+) ( N ` { X } ) ) ) |