This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subgroup sum membership (for a left module or left vector space). (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmelval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| lsmelval.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | ||
| Assertion | lsmelval | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmelval.a | ⊢ + = ( +g ‘ 𝐺 ) | |
| 2 | lsmelval.p | ⊢ ⊕ = ( LSSum ‘ 𝐺 ) | |
| 3 | subgrcl | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝐺 ∈ Grp ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | 4 | subgss | ⊢ ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) ) |
| 6 | 4 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) ) |
| 7 | 4 1 2 | lsmelvalx | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) ) |
| 8 | 3 5 6 7 | syl2an3an | ⊢ ( ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑋 ∈ ( 𝑇 ⊕ 𝑈 ) ↔ ∃ 𝑦 ∈ 𝑇 ∃ 𝑧 ∈ 𝑈 𝑋 = ( 𝑦 + 𝑧 ) ) ) |