This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hilbert space has the covering property (using spans of singletons to represent atoms). Exercise 5 of Kalmbach p. 153. (Contributed by NM, 7-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spansncv.1 | ⊢ 𝐴 ∈ Cℋ | |
| spansncv.2 | ⊢ 𝐵 ∈ Cℋ | ||
| spansncv.3 | ⊢ 𝐶 ∈ ℋ | ||
| Assertion | spansncvi | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spansncv.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | spansncv.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | spansncv.3 | ⊢ 𝐶 ∈ ℋ | |
| 4 | simpr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) | |
| 5 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐴 ⊆ 𝐵 ) |
| 7 | pssnel | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 8 | ssel2 | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) | |
| 9 | 1 3 | spansnji | ⊢ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) |
| 10 | 9 | eleq2i | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) ↔ 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |
| 11 | 3 | spansnchi | ⊢ ( span ‘ { 𝐶 } ) ∈ Cℋ |
| 12 | 1 11 | chseli | ⊢ ( 𝑥 ∈ ( 𝐴 +ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 13 | 10 12 | bitr3i | ⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ↔ ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) |
| 14 | eleq1 | ⊢ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝑥 ∈ 𝐵 ↔ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ) ) | |
| 15 | 14 | biimpac | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ) |
| 16 | 5 | sselda | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐵 ) |
| 17 | 2 | chshii | ⊢ 𝐵 ∈ Sℋ |
| 18 | shsubcl | ⊢ ( ( 𝐵 ∈ Sℋ ∧ ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) | |
| 19 | 17 18 | mp3an1 | ⊢ ( ( ( 𝑦 +ℎ 𝑧 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 20 | 15 16 19 | syl2an | ⊢ ( ( ( 𝑥 ∈ 𝐵 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 21 | 20 | exp43 | ⊢ ( 𝑥 ∈ 𝐵 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝐴 ⊊ 𝐵 → ( 𝑦 ∈ 𝐴 → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) ) ) ) |
| 22 | 21 | com14 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( 𝐴 ⊊ 𝐵 → ( 𝑥 ∈ 𝐵 → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) ) ) ) |
| 23 | 22 | imp45 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ) |
| 24 | 1 | cheli | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ℋ ) |
| 25 | 11 | cheli | ⊢ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → 𝑧 ∈ ℋ ) |
| 26 | hvpncan2 | ⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) = 𝑧 ) | |
| 27 | 24 25 26 | syl2an | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) = 𝑧 ) |
| 28 | 27 | eleq1d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( ( 𝑦 +ℎ 𝑧 ) −ℎ 𝑦 ) ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 29 | 23 28 | imbitrid | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) → 𝑧 ∈ 𝐵 ) ) |
| 30 | 29 | imp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ ( 𝑦 ∈ 𝐴 ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 31 | 30 | anandis | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) ) ) → 𝑧 ∈ 𝐵 ) |
| 32 | 31 | exp45 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) ) ) ) |
| 33 | 32 | imp41 | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) |
| 34 | 33 | adantrr | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐵 ) |
| 35 | oveq2 | ⊢ ( 𝑧 = 0ℎ → ( 𝑦 +ℎ 𝑧 ) = ( 𝑦 +ℎ 0ℎ ) ) | |
| 36 | ax-hvaddid | ⊢ ( 𝑦 ∈ ℋ → ( 𝑦 +ℎ 0ℎ ) = 𝑦 ) | |
| 37 | 24 36 | syl | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑦 +ℎ 0ℎ ) = 𝑦 ) |
| 38 | 35 37 | sylan9eqr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑦 +ℎ 𝑧 ) = 𝑦 ) |
| 39 | 38 | eqeq2d | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) ↔ 𝑥 = 𝑦 ) ) |
| 40 | eleq1a | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = 𝑦 → 𝑥 ∈ 𝐴 ) ) |
| 42 | 39 41 | sylbid | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 = 0ℎ ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → 𝑥 ∈ 𝐴 ) ) |
| 43 | 42 | impancom | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( 𝑧 = 0ℎ → 𝑥 ∈ 𝐴 ) ) |
| 44 | 43 | necon3bd | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) → ( ¬ 𝑥 ∈ 𝐴 → 𝑧 ≠ 0ℎ ) ) |
| 45 | 44 | imp | ⊢ ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → 𝑧 ≠ 0ℎ ) |
| 46 | spansnss | ⊢ ( ( 𝐵 ∈ Sℋ ∧ 𝑧 ∈ 𝐵 ) → ( span ‘ { 𝑧 } ) ⊆ 𝐵 ) | |
| 47 | 17 46 | mpan | ⊢ ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝑧 } ) ⊆ 𝐵 ) |
| 48 | spansneleq | ⊢ ( ( 𝐶 ∈ ℋ ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) ) | |
| 49 | 3 48 | mpan | ⊢ ( 𝑧 ≠ 0ℎ → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) ) |
| 50 | 49 | imp | ⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( span ‘ { 𝑧 } ) = ( span ‘ { 𝐶 } ) ) |
| 51 | 50 | sseq1d | ⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( ( span ‘ { 𝑧 } ) ⊆ 𝐵 ↔ ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 52 | 47 51 | imbitrid | ⊢ ( ( 𝑧 ≠ 0ℎ ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 53 | 52 | ancoms | ⊢ ( ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ 𝑧 ≠ 0ℎ ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 54 | 45 53 | sylan2 | ⊢ ( ( 𝑧 ∈ ( span ‘ { 𝐶 } ) ∧ ( ( 𝑦 ∈ 𝐴 ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 55 | 54 | exp44 | ⊢ ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑦 ∈ 𝐴 → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) ) |
| 56 | 55 | com12 | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑧 ∈ ( span ‘ { 𝐶 } ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ¬ 𝑥 ∈ 𝐴 → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) ) |
| 57 | 56 | imp41 | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ¬ 𝑥 ∈ 𝐴 ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 58 | 57 | adantrl | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( 𝑧 ∈ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 59 | 34 58 | mpd | ⊢ ( ( ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 = ( 𝑦 +ℎ 𝑧 ) ) ∧ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ∧ ¬ 𝑥 ∈ 𝐴 ) ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) |
| 60 | 59 | exp43 | ⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ ( span ‘ { 𝐶 } ) ) → ( 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) ) |
| 61 | 60 | rexlimivv | ⊢ ( ∃ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ ( span ‘ { 𝐶 } ) 𝑥 = ( 𝑦 +ℎ 𝑧 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 62 | 13 61 | sylbi | ⊢ ( 𝑥 ∈ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 63 | 8 62 | syl | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 64 | 63 | imp | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝑥 ∈ 𝐵 ) ∧ ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 65 | 64 | anandirs | ⊢ ( ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( ¬ 𝑥 ∈ 𝐴 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 66 | 65 | expimpd | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 67 | 66 | exlimdv | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐴 ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 68 | 7 67 | syl5 | ⊢ ( ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ∧ 𝐴 ⊊ 𝐵 ) → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 69 | 68 | ex | ⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( 𝐴 ⊊ 𝐵 → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) ) |
| 70 | 69 | pm2.43d | ⊢ ( 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) → ( 𝐴 ⊊ 𝐵 → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) ) |
| 71 | 70 | impcom | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) |
| 72 | 1 11 2 | chlubii | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( span ‘ { 𝐶 } ) ⊆ 𝐵 ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ⊆ 𝐵 ) |
| 73 | 6 71 72 | syl2anc | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ⊆ 𝐵 ) |
| 74 | 4 73 | eqssd | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐵 ⊆ ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) → 𝐵 = ( 𝐴 ∨ℋ ( span ‘ { 𝐶 } ) ) ) |