This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | ||
| lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| lmodfopne.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| lmodfopne.1 | ⊢ 1 = ( 1r ‘ 𝑆 ) | ||
| Assertion | lmodfopne | ⊢ ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ · ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 2 | lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | |
| 3 | lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 5 | lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | lmodfopne.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 7 | lmodfopne.1 | ⊢ 1 = ( 1r ‘ 𝑆 ) | |
| 8 | 1 2 3 4 5 6 7 | lmodfopnelem2 | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
| 9 | simpl | ⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → 0 ∈ 𝑉 ) | |
| 10 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 11 | 3 10 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 12 | 11 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 14 | 3 13 2 | plusfval | ⊢ ( ( 0 ∈ 𝑉 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 15 | 14 | eqcomd | ⊢ ( ( 0 ∈ 𝑉 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 + ( 0g ‘ 𝑊 ) ) ) |
| 16 | 9 12 15 | syl2anr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 + ( 0g ‘ 𝑊 ) ) ) |
| 17 | oveq | ⊢ ( + = · → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) | |
| 18 | 17 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 + ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) |
| 19 | 16 18 | eqtrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0 · ( 0g ‘ 𝑊 ) ) ) |
| 20 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 21 | 20 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑊 ∈ Grp ) |
| 22 | 3 13 10 | grprid | ⊢ ( ( 𝑊 ∈ Grp ∧ 0 ∈ 𝑉 ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 0 ) |
| 23 | 21 9 22 | syl2an | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 0 ) |
| 24 | 4 5 6 | lmod0cl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
| 25 | 24 11 | jca | ⊢ ( 𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 26 | 25 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) ) |
| 28 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 29 | 3 4 5 1 28 | scafval | ⊢ ( ( 0 ∈ 𝐾 ∧ ( 0g ‘ 𝑊 ) ∈ 𝑉 ) → ( 0 · ( 0g ‘ 𝑊 ) ) = ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 30 | 27 29 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 · ( 0g ‘ 𝑊 ) ) = ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 31 | 24 | ancli | ⊢ ( 𝑊 ∈ LMod → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) ) |
| 34 | 4 28 5 10 | lmodvs0 | ⊢ ( ( 𝑊 ∈ LMod ∧ 0 ∈ 𝐾 ) → ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 35 | 33 34 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 ( ·𝑠 ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝑊 ) ) |
| 36 | simpr | ⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → 1 ∈ 𝑉 ) | |
| 37 | 3 13 10 | grprid | ⊢ ( ( 𝑊 ∈ Grp ∧ 1 ∈ 𝑉 ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 1 ) |
| 38 | 21 36 37 | syl2an | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = 1 ) |
| 39 | 4 5 7 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |
| 40 | 39 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 1 ∈ 𝐾 ) |
| 41 | 3 4 5 1 28 | scafval | ⊢ ( ( 1 ∈ 𝐾 ∧ 1 ∈ 𝑉 ) → ( 1 · 1 ) = ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
| 42 | 40 36 41 | syl2an | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) ) |
| 43 | 3 4 28 7 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 1 ∈ 𝑉 ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) = 1 ) |
| 44 | 43 | ad2ant2rl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( ·𝑠 ‘ 𝑊 ) 1 ) = 1 ) |
| 45 | 42 44 | eqtrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = 1 ) |
| 46 | oveq | ⊢ ( + = · → ( 1 + 1 ) = ( 1 · 1 ) ) | |
| 47 | 46 | eqcomd | ⊢ ( + = · → ( 1 · 1 ) = ( 1 + 1 ) ) |
| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 + 1 ) ) |
| 49 | 36 36 | jca | ⊢ ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
| 50 | 49 | adantl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
| 51 | 3 13 2 | plusfval | ⊢ ( ( 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) → ( 1 + 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
| 52 | 50 51 | syl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 + 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
| 53 | 48 52 | eqtrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 · 1 ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
| 54 | 38 45 53 | 3eqtr2d | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ) |
| 55 | 21 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 𝑊 ∈ Grp ) |
| 56 | 12 | adantr | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0g ‘ 𝑊 ) ∈ 𝑉 ) |
| 57 | 36 | adantl | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 1 ∈ 𝑉 ) |
| 58 | 3 13 | grplcan | ⊢ ( ( 𝑊 ∈ Grp ∧ ( ( 0g ‘ 𝑊 ) ∈ 𝑉 ∧ 1 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ↔ ( 0g ‘ 𝑊 ) = 1 ) ) |
| 59 | 55 56 57 57 58 | syl13anc | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( ( 1 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 1 ( +g ‘ 𝑊 ) 1 ) ↔ ( 0g ‘ 𝑊 ) = 1 ) ) |
| 60 | 54 59 | mpbid | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0g ‘ 𝑊 ) = 1 ) |
| 61 | 30 35 60 | 3eqtrd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → ( 0 · ( 0g ‘ 𝑊 ) ) = 1 ) |
| 62 | 19 23 61 | 3eqtr3rd | ⊢ ( ( ( 𝑊 ∈ LMod ∧ + = · ) ∧ ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) → 1 = 0 ) |
| 63 | 8 62 | mpdan | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 1 = 0 ) |
| 64 | 63 | ex | ⊢ ( 𝑊 ∈ LMod → ( + = · → 1 = 0 ) ) |
| 65 | 64 | necon3d | ⊢ ( 𝑊 ∈ LMod → ( 1 ≠ 0 → + ≠ · ) ) |
| 66 | 65 | imp | ⊢ ( ( 𝑊 ∈ LMod ∧ 1 ≠ 0 ) → + ≠ · ) |