This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring zero in a left module belongs to the set of scalars. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmod0cl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lmod0cl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lmod0cl.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | ||
| Assertion | lmod0cl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmod0cl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lmod0cl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lmod0cl.z | ⊢ 0 = ( 0g ‘ 𝐹 ) | |
| 4 | 1 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 5 | 2 3 | ring0cl | ⊢ ( 𝐹 ∈ Ring → 0 ∈ 𝐾 ) |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |