This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The (functionalized) operations of a left module (over a nonzero ring) cannot be identical. (Contributed by NM, 31-May-2008) (Revised by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| lmodfopne.a | |- .+ = ( +f ` W ) |
||
| lmodfopne.v | |- V = ( Base ` W ) |
||
| lmodfopne.s | |- S = ( Scalar ` W ) |
||
| lmodfopne.k | |- K = ( Base ` S ) |
||
| lmodfopne.0 | |- .0. = ( 0g ` S ) |
||
| lmodfopne.1 | |- .1. = ( 1r ` S ) |
||
| Assertion | lmodfopne | |- ( ( W e. LMod /\ .1. =/= .0. ) -> .+ =/= .x. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | |- .x. = ( .sf ` W ) |
|
| 2 | lmodfopne.a | |- .+ = ( +f ` W ) |
|
| 3 | lmodfopne.v | |- V = ( Base ` W ) |
|
| 4 | lmodfopne.s | |- S = ( Scalar ` W ) |
|
| 5 | lmodfopne.k | |- K = ( Base ` S ) |
|
| 6 | lmodfopne.0 | |- .0. = ( 0g ` S ) |
|
| 7 | lmodfopne.1 | |- .1. = ( 1r ` S ) |
|
| 8 | 1 2 3 4 5 6 7 | lmodfopnelem2 | |- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. V /\ .1. e. V ) ) |
| 9 | simpl | |- ( ( .0. e. V /\ .1. e. V ) -> .0. e. V ) |
|
| 10 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 11 | 3 10 | lmod0vcl | |- ( W e. LMod -> ( 0g ` W ) e. V ) |
| 12 | 11 | adantr | |- ( ( W e. LMod /\ .+ = .x. ) -> ( 0g ` W ) e. V ) |
| 13 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 14 | 3 13 2 | plusfval | |- ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. ( +g ` W ) ( 0g ` W ) ) ) |
| 15 | 14 | eqcomd | |- ( ( .0. e. V /\ ( 0g ` W ) e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) |
| 16 | 9 12 15 | syl2anr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .+ ( 0g ` W ) ) ) |
| 17 | oveq | |- ( .+ = .x. -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
|
| 18 | 17 | ad2antlr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .+ ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
| 19 | 16 18 | eqtrd | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = ( .0. .x. ( 0g ` W ) ) ) |
| 20 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 21 | 20 | adantr | |- ( ( W e. LMod /\ .+ = .x. ) -> W e. Grp ) |
| 22 | 3 13 10 | grprid | |- ( ( W e. Grp /\ .0. e. V ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) |
| 23 | 21 9 22 | syl2an | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( +g ` W ) ( 0g ` W ) ) = .0. ) |
| 24 | 4 5 6 | lmod0cl | |- ( W e. LMod -> .0. e. K ) |
| 25 | 24 11 | jca | |- ( W e. LMod -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
| 26 | 25 | adantr | |- ( ( W e. LMod /\ .+ = .x. ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
| 27 | 26 | adantr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. e. K /\ ( 0g ` W ) e. V ) ) |
| 28 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 29 | 3 4 5 1 28 | scafval | |- ( ( .0. e. K /\ ( 0g ` W ) e. V ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) |
| 30 | 27 29 | syl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = ( .0. ( .s ` W ) ( 0g ` W ) ) ) |
| 31 | 24 | ancli | |- ( W e. LMod -> ( W e. LMod /\ .0. e. K ) ) |
| 32 | 31 | adantr | |- ( ( W e. LMod /\ .+ = .x. ) -> ( W e. LMod /\ .0. e. K ) ) |
| 33 | 32 | adantr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( W e. LMod /\ .0. e. K ) ) |
| 34 | 4 28 5 10 | lmodvs0 | |- ( ( W e. LMod /\ .0. e. K ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) |
| 35 | 33 34 | syl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. ( .s ` W ) ( 0g ` W ) ) = ( 0g ` W ) ) |
| 36 | simpr | |- ( ( .0. e. V /\ .1. e. V ) -> .1. e. V ) |
|
| 37 | 3 13 10 | grprid | |- ( ( W e. Grp /\ .1. e. V ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) |
| 38 | 21 36 37 | syl2an | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = .1. ) |
| 39 | 4 5 7 | lmod1cl | |- ( W e. LMod -> .1. e. K ) |
| 40 | 39 | adantr | |- ( ( W e. LMod /\ .+ = .x. ) -> .1. e. K ) |
| 41 | 3 4 5 1 28 | scafval | |- ( ( .1. e. K /\ .1. e. V ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) |
| 42 | 40 36 41 | syl2an | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( .s ` W ) .1. ) ) |
| 43 | 3 4 28 7 | lmodvs1 | |- ( ( W e. LMod /\ .1. e. V ) -> ( .1. ( .s ` W ) .1. ) = .1. ) |
| 44 | 43 | ad2ant2rl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( .s ` W ) .1. ) = .1. ) |
| 45 | 42 44 | eqtrd | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = .1. ) |
| 46 | oveq | |- ( .+ = .x. -> ( .1. .+ .1. ) = ( .1. .x. .1. ) ) |
|
| 47 | 46 | eqcomd | |- ( .+ = .x. -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) |
| 48 | 47 | ad2antlr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. .+ .1. ) ) |
| 49 | 36 36 | jca | |- ( ( .0. e. V /\ .1. e. V ) -> ( .1. e. V /\ .1. e. V ) ) |
| 50 | 49 | adantl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. e. V /\ .1. e. V ) ) |
| 51 | 3 13 2 | plusfval | |- ( ( .1. e. V /\ .1. e. V ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) |
| 52 | 50 51 | syl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .+ .1. ) = ( .1. ( +g ` W ) .1. ) ) |
| 53 | 48 52 | eqtrd | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. .x. .1. ) = ( .1. ( +g ` W ) .1. ) ) |
| 54 | 38 45 53 | 3eqtr2d | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) ) |
| 55 | 21 | adantr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> W e. Grp ) |
| 56 | 12 | adantr | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) e. V ) |
| 57 | 36 | adantl | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. e. V ) |
| 58 | 3 13 | grplcan | |- ( ( W e. Grp /\ ( ( 0g ` W ) e. V /\ .1. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) |
| 59 | 55 56 57 57 58 | syl13anc | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( ( .1. ( +g ` W ) ( 0g ` W ) ) = ( .1. ( +g ` W ) .1. ) <-> ( 0g ` W ) = .1. ) ) |
| 60 | 54 59 | mpbid | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( 0g ` W ) = .1. ) |
| 61 | 30 35 60 | 3eqtrd | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> ( .0. .x. ( 0g ` W ) ) = .1. ) |
| 62 | 19 23 61 | 3eqtr3rd | |- ( ( ( W e. LMod /\ .+ = .x. ) /\ ( .0. e. V /\ .1. e. V ) ) -> .1. = .0. ) |
| 63 | 8 62 | mpdan | |- ( ( W e. LMod /\ .+ = .x. ) -> .1. = .0. ) |
| 64 | 63 | ex | |- ( W e. LMod -> ( .+ = .x. -> .1. = .0. ) ) |
| 65 | 64 | necon3d | |- ( W e. LMod -> ( .1. =/= .0. -> .+ =/= .x. ) ) |
| 66 | 65 | imp | |- ( ( W e. LMod /\ .1. =/= .0. ) -> .+ =/= .x. ) |