This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear-combination sum is a function. (Contributed by Stefan O'Rear, 28-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcomf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lcomf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lcomf.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lcomf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| lcomf.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lcomf.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) | ||
| lcomf.h | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) | ||
| lcomf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| Assertion | lcomf | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lcomf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lcomf.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lcomf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 5 | lcomf.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | lcomf.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) | |
| 7 | lcomf.h | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) | |
| 8 | lcomf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | 4 1 3 2 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 11 | 5 10 | sylan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 · 𝑦 ) ∈ 𝐵 ) |
| 12 | inidm | ⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 | |
| 13 | 11 6 7 8 8 12 | off | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |