This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left cancellation law for groups. (Contributed by NM, 25-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplcan.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplcan.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplcan.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | oveq2 | ⊢ ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) | |
| 4 | 3 | adantl | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 7 | 1 2 5 6 | grplinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 8 | 7 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 9 | 8 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( 0g ‘ 𝐺 ) + 𝑋 ) ) |
| 10 | 1 6 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑍 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 11 | 10 | adantrl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 12 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 13 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 11 12 13 | 3jca | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) |
| 15 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 16 | 14 15 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 17 | 16 | anassrs | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑋 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) ) |
| 18 | 1 2 5 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑋 ) = 𝑋 ) |
| 20 | 9 17 19 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑍 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 21 | 20 | adantrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑋 ) ) = 𝑋 ) |
| 23 | 7 | adantrl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) = ( 0g ‘ 𝐺 ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( 0g ‘ 𝐺 ) + 𝑌 ) ) |
| 25 | 10 | adantrl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ) |
| 26 | simprr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑍 ∈ 𝐵 ) | |
| 27 | simprl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → 𝑌 ∈ 𝐵 ) | |
| 28 | 25 26 27 | 3jca | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) |
| 29 | 1 2 | grpass | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 30 | 28 29 | syldan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + 𝑍 ) + 𝑌 ) = ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) ) |
| 31 | 1 2 5 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 32 | 31 | adantrr | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑌 ) = 𝑌 ) |
| 33 | 24 30 32 | 3eqtr3d | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 35 | 34 | adantr | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑍 ) + ( 𝑍 + 𝑌 ) ) = 𝑌 ) |
| 36 | 4 22 35 | 3eqtr3d | ⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) ∧ ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) → 𝑋 = 𝑌 ) |
| 37 | 36 | exp53 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐵 → ( 𝑌 ∈ 𝐵 → ( 𝑍 ∈ 𝐵 → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) ) ) ) |
| 38 | 37 | 3imp2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) → 𝑋 = 𝑌 ) ) |
| 39 | oveq2 | ⊢ ( 𝑋 = 𝑌 → ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ) | |
| 40 | 38 39 | impbid1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑍 + 𝑋 ) = ( 𝑍 + 𝑌 ) ↔ 𝑋 = 𝑌 ) ) |