This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | ||
| lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | ||
| lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | ||
| lmodfopne.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| lmodfopne.1 | ⊢ 1 = ( 1r ‘ 𝑆 ) | ||
| Assertion | lmodfopnelem2 | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodfopne.t | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 2 | lmodfopne.a | ⊢ + = ( +𝑓 ‘ 𝑊 ) | |
| 3 | lmodfopne.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | lmodfopne.s | ⊢ 𝑆 = ( Scalar ‘ 𝑊 ) | |
| 5 | lmodfopne.k | ⊢ 𝐾 = ( Base ‘ 𝑆 ) | |
| 6 | lmodfopne.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 7 | lmodfopne.1 | ⊢ 1 = ( 1r ‘ 𝑆 ) | |
| 8 | 1 2 3 4 5 | lmodfopnelem1 | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → 𝑉 = 𝐾 ) |
| 9 | 8 | ex | ⊢ ( 𝑊 ∈ LMod → ( + = · → 𝑉 = 𝐾 ) ) |
| 10 | 4 5 6 | lmod0cl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝐾 ) |
| 11 | 4 5 7 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → 1 ∈ 𝐾 ) |
| 12 | 10 11 | jca | ⊢ ( 𝑊 ∈ LMod → ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾 ) ) |
| 13 | eleq2 | ⊢ ( 𝑉 = 𝐾 → ( 0 ∈ 𝑉 ↔ 0 ∈ 𝐾 ) ) | |
| 14 | eleq2 | ⊢ ( 𝑉 = 𝐾 → ( 1 ∈ 𝑉 ↔ 1 ∈ 𝐾 ) ) | |
| 15 | 13 14 | anbi12d | ⊢ ( 𝑉 = 𝐾 → ( ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ↔ ( 0 ∈ 𝐾 ∧ 1 ∈ 𝐾 ) ) ) |
| 16 | 12 15 | syl5ibrcom | ⊢ ( 𝑊 ∈ LMod → ( 𝑉 = 𝐾 → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) ) |
| 17 | 9 16 | syld | ⊢ ( 𝑊 ∈ LMod → ( + = · → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝑊 ∈ LMod ∧ + = · ) → ( 0 ∈ 𝑉 ∧ 1 ∈ 𝑉 ) ) |