This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmneg | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcm0val | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = 0 ) | |
| 2 | znegcl | ⊢ ( 𝑁 ∈ ℤ → - 𝑁 ∈ ℤ ) | |
| 3 | lcm0val | ⊢ ( - 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) | |
| 4 | 2 3 | syl | ⊢ ( 𝑁 ∈ ℤ → ( - 𝑁 lcm 0 ) = 0 ) |
| 5 | 1 4 | eqtr4d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
| 6 | 5 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) |
| 7 | oveq2 | ⊢ ( 𝑀 = 0 → ( 𝑁 lcm 𝑀 ) = ( 𝑁 lcm 0 ) ) | |
| 8 | oveq2 | ⊢ ( 𝑀 = 0 → ( - 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 0 ) ) | |
| 9 | 7 8 | eqeq12d | ⊢ ( 𝑀 = 0 → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ↔ ( 𝑁 lcm 0 ) = ( - 𝑁 lcm 0 ) ) ) |
| 11 | 6 10 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) |
| 12 | lcmcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑁 lcm 𝑀 ) ) | |
| 13 | lcmcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) | |
| 14 | 2 13 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( - 𝑁 lcm 𝑀 ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( 𝑁 lcm 𝑀 ) = ( - 𝑁 lcm 𝑀 ) ) ) |
| 17 | 11 16 | mpbird | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑀 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 18 | neg0 | ⊢ - 0 = 0 | |
| 19 | 18 | oveq2i | ⊢ ( 𝑀 lcm - 0 ) = ( 𝑀 lcm 0 ) |
| 20 | 19 | eqcomi | ⊢ ( 𝑀 lcm 0 ) = ( 𝑀 lcm - 0 ) |
| 21 | oveq2 | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm 0 ) ) | |
| 22 | negeq | ⊢ ( 𝑁 = 0 → - 𝑁 = - 0 ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm - 0 ) ) |
| 24 | 20 21 23 | 3eqtr4a | ⊢ ( 𝑁 = 0 → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 25 | 24 | adantl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 26 | 17 25 | jaodan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 27 | dvdslcm | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) | |
| 28 | 2 27 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 29 | simpr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 30 | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) | |
| 31 | 2 30 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ0 ) |
| 32 | 31 | nn0zd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) |
| 33 | negdvdsb | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm - 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) | |
| 34 | 29 32 33 | syl2anc | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 35 | 34 | anbi2d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) ) |
| 36 | 28 35 | mpbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 37 | 36 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) ) |
| 38 | zcn | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) | |
| 39 | 38 | negeq0d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 = 0 ↔ - 𝑁 = 0 ) ) |
| 40 | 39 | orbi2d | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
| 41 | 40 | notbid | ⊢ ( 𝑁 ∈ ℤ → ( ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ↔ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) ) |
| 42 | 41 | biimpa | ⊢ ( ( 𝑁 ∈ ℤ ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
| 43 | 42 | adantll | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) |
| 44 | lcmn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) | |
| 45 | 2 44 | sylanl2 | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
| 46 | 43 45 | syldan | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ∈ ℕ ) |
| 47 | simpl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) | |
| 48 | 3anass | ⊢ ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ↔ ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) ) | |
| 49 | 46 47 48 | sylanbrc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 50 | simpr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) | |
| 51 | lcmledvds | ⊢ ( ( ( ( 𝑀 lcm - 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) | |
| 52 | 49 50 51 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm - 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm - 𝑁 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) ) |
| 53 | 37 52 | mpd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ) |
| 54 | dvdslcm | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) | |
| 55 | 54 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 56 | simplr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → 𝑁 ∈ ℤ ) | |
| 57 | lcmn0cl | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ ) | |
| 58 | 57 | nnzd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) ∈ ℤ ) |
| 59 | negdvdsb | ⊢ ( ( 𝑁 ∈ ℤ ∧ ( 𝑀 lcm 𝑁 ) ∈ ℤ ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) | |
| 60 | 56 58 59 | syl2anc | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ↔ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) |
| 61 | 60 | anbi2d | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ↔ ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 62 | lcmledvds | ⊢ ( ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) | |
| 63 | 62 | ex | ⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 64 | 2 63 | syl3an3 | ⊢ ( ( ( 𝑀 lcm 𝑁 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 65 | 64 | 3expib | ⊢ ( ( 𝑀 lcm 𝑁 ) ∈ ℕ → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ¬ ( 𝑀 = 0 ∨ - 𝑁 = 0 ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) ) |
| 66 | 57 47 43 65 | syl3c | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ - 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
| 67 | 61 66 | sylbid | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 ∥ ( 𝑀 lcm 𝑁 ) ∧ 𝑁 ∥ ( 𝑀 lcm 𝑁 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) |
| 68 | 55 67 | mpd | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) |
| 69 | lcmcl | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℕ0 ) | |
| 70 | 69 | nn0red | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) ∈ ℝ ) |
| 71 | 30 | nn0red | ⊢ ( ( 𝑀 ∈ ℤ ∧ - 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
| 72 | 2 71 | sylan2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) ∈ ℝ ) |
| 73 | 70 72 | letri3d | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ↔ ( ( 𝑀 lcm 𝑁 ) ≤ ( 𝑀 lcm - 𝑁 ) ∧ ( 𝑀 lcm - 𝑁 ) ≤ ( 𝑀 lcm 𝑁 ) ) ) ) |
| 75 | 53 68 74 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ¬ ( 𝑀 = 0 ∨ 𝑁 = 0 ) ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 76 | 26 75 | pm2.61dan | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm 𝑁 ) = ( 𝑀 lcm - 𝑁 ) ) |
| 77 | 76 | eqcomd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 lcm - 𝑁 ) = ( 𝑀 lcm 𝑁 ) ) |