This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negating one operand of the lcm operator does not alter the result. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmneg | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
|
| 2 | znegcl | |- ( N e. ZZ -> -u N e. ZZ ) |
|
| 3 | lcm0val | |- ( -u N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
|
| 4 | 2 3 | syl | |- ( N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
| 5 | 1 4 | eqtr4d | |- ( N e. ZZ -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
| 6 | 5 | ad2antlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
| 7 | oveq2 | |- ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) |
|
| 8 | oveq2 | |- ( M = 0 -> ( -u N lcm M ) = ( -u N lcm 0 ) ) |
|
| 9 | 7 8 | eqeq12d | |- ( M = 0 -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
| 10 | 9 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
| 11 | 6 10 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = ( -u N lcm M ) ) |
| 12 | lcmcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
|
| 13 | lcmcom | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
|
| 14 | 2 13 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
| 15 | 12 14 | eqeq12d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
| 16 | 15 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
| 17 | 11 16 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 18 | neg0 | |- -u 0 = 0 |
|
| 19 | 18 | oveq2i | |- ( M lcm -u 0 ) = ( M lcm 0 ) |
| 20 | 19 | eqcomi | |- ( M lcm 0 ) = ( M lcm -u 0 ) |
| 21 | oveq2 | |- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
|
| 22 | negeq | |- ( N = 0 -> -u N = -u 0 ) |
|
| 23 | 22 | oveq2d | |- ( N = 0 -> ( M lcm -u N ) = ( M lcm -u 0 ) ) |
| 24 | 20 21 23 | 3eqtr4a | |- ( N = 0 -> ( M lcm N ) = ( M lcm -u N ) ) |
| 25 | 24 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 26 | 17 25 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 27 | dvdslcm | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
|
| 28 | 2 27 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
| 29 | simpr | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
|
| 30 | lcmcl | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
|
| 31 | 2 30 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
| 32 | 31 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. ZZ ) |
| 33 | negdvdsb | |- ( ( N e. ZZ /\ ( M lcm -u N ) e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
|
| 34 | 29 32 33 | syl2anc | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
| 35 | 34 | anbi2d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) <-> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) ) |
| 36 | 28 35 | mpbird | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
| 37 | 36 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
| 38 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 39 | 38 | negeq0d | |- ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) |
| 40 | 39 | orbi2d | |- ( N e. ZZ -> ( ( M = 0 \/ N = 0 ) <-> ( M = 0 \/ -u N = 0 ) ) ) |
| 41 | 40 | notbid | |- ( N e. ZZ -> ( -. ( M = 0 \/ N = 0 ) <-> -. ( M = 0 \/ -u N = 0 ) ) ) |
| 42 | 41 | biimpa | |- ( ( N e. ZZ /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
| 43 | 42 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
| 44 | lcmn0cl | |- ( ( ( M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
|
| 45 | 2 44 | sylanl2 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
| 46 | 43 45 | syldan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
| 47 | simpl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
|
| 48 | 3anass | |- ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M lcm -u N ) e. NN /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
|
| 49 | 46 47 48 | sylanbrc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) ) |
| 50 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ N = 0 ) ) |
|
| 51 | lcmledvds | |- ( ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
|
| 52 | 49 50 51 | syl2anc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
| 53 | 37 52 | mpd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) |
| 54 | dvdslcm | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
|
| 55 | 54 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
| 56 | simplr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> N e. ZZ ) |
|
| 57 | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
|
| 58 | 57 | nnzd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. ZZ ) |
| 59 | negdvdsb | |- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
|
| 60 | 56 58 59 | syl2anc | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
| 61 | 60 | anbi2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) <-> ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) ) ) |
| 62 | lcmledvds | |- ( ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
|
| 63 | 62 | ex | |- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 64 | 2 63 | syl3an3 | |- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 65 | 64 | 3expib | |- ( ( M lcm N ) e. NN -> ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) ) |
| 66 | 57 47 43 65 | syl3c | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
| 67 | 61 66 | sylbid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
| 68 | 55 67 | mpd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) |
| 69 | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
|
| 70 | 69 | nn0red | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. RR ) |
| 71 | 30 | nn0red | |- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
| 72 | 2 71 | sylan2 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
| 73 | 70 72 | letri3d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 74 | 73 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
| 75 | 53 68 74 | mpbir2and | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 76 | 26 75 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( M lcm -u N ) ) |
| 77 | 76 | eqcomd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |