This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The _lcm function for a union of sets of integers. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfun | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cleq1lem | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) | |
| 2 | uneq2 | ⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ∅ ) ) | |
| 3 | un0 | ⊢ ( 𝑌 ∪ ∅ ) = 𝑌 | |
| 4 | 2 3 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( 𝑌 ∪ 𝑥 ) = 𝑌 ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑥 = ∅ → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ 𝑌 ) ) |
| 6 | fveq2 | ⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = ( lcm ‘ ∅ ) ) | |
| 7 | lcmf0 | ⊢ ( lcm ‘ ∅ ) = 1 | |
| 8 | 6 7 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( lcm ‘ 𝑥 ) = 1 ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
| 10 | 5 9 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) |
| 11 | 1 10 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) ) ) |
| 12 | cleq1lem | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) | |
| 13 | uneq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑦 ) ) | |
| 14 | 13 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑦 ) ) | |
| 16 | 15 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
| 17 | 14 16 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) |
| 18 | 12 17 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) ) |
| 19 | cleq1lem | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) | |
| 20 | uneq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 22 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( lcm ‘ 𝑥 ) = ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 23 | 22 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 24 | 21 23 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 25 | 19 24 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 26 | cleq1lem | ⊢ ( 𝑥 = 𝑍 → ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ↔ ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ) | |
| 27 | uneq2 | ⊢ ( 𝑥 = 𝑍 → ( 𝑌 ∪ 𝑥 ) = ( 𝑌 ∪ 𝑍 ) ) | |
| 28 | 27 | fveq2d | ⊢ ( 𝑥 = 𝑍 → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑥 = 𝑍 → ( lcm ‘ 𝑥 ) = ( lcm ‘ 𝑍 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |
| 31 | 28 30 | eqeq12d | ⊢ ( 𝑥 = 𝑍 → ( ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ↔ ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 32 | 26 31 | imbi12d | ⊢ ( 𝑥 = 𝑍 → ( ( ( 𝑥 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑥 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑥 ) ) ) ↔ ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
| 33 | lcmfcl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℕ0 ) | |
| 34 | 33 | nn0zd | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 35 | lcm1 | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℤ → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) | |
| 36 | 34 35 | syl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
| 37 | nn0re | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( lcm ‘ 𝑌 ) ∈ ℝ ) | |
| 38 | nn0ge0 | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → 0 ≤ ( lcm ‘ 𝑌 ) ) | |
| 39 | 37 38 | jca | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
| 40 | 33 39 | syl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
| 41 | absid | ⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) | |
| 42 | 40 41 | syl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
| 43 | 36 42 | eqtrd | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
| 44 | 43 | adantl | ⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( lcm ‘ 𝑌 ) lcm 1 ) = ( lcm ‘ 𝑌 ) ) |
| 45 | 44 | eqcomd | ⊢ ( ( ∅ ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) = ( ( lcm ‘ 𝑌 ) lcm 1 ) ) |
| 46 | unass | ⊢ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) = ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) | |
| 47 | 46 | eqcomi | ⊢ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) |
| 48 | 47 | a1i | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) |
| 49 | 48 | fveq2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) ) |
| 50 | simpl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → 𝑌 ⊆ ℤ ) | |
| 51 | 50 | adantl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑌 ⊆ ℤ ) |
| 52 | unss | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ) | |
| 53 | simpl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑦 ⊆ ℤ ) | |
| 54 | 52 53 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑦 ⊆ ℤ ) |
| 55 | 54 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑦 ⊆ ℤ ) |
| 56 | 51 55 | unssd | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
| 57 | 56 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ) |
| 58 | unfi | ⊢ ( ( 𝑌 ∈ Fin ∧ 𝑦 ∈ Fin ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) | |
| 59 | 58 | ex | ⊢ ( 𝑌 ∈ Fin → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 60 | 59 | adantl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 61 | 60 | adantl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) ) |
| 62 | 61 | impcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑌 ∪ 𝑦 ) ∈ Fin ) |
| 63 | vex | ⊢ 𝑧 ∈ V | |
| 64 | 63 | snss | ⊢ ( 𝑧 ∈ ℤ ↔ { 𝑧 } ⊆ ℤ ) |
| 65 | 64 | biimpri | ⊢ ( { 𝑧 } ⊆ ℤ → 𝑧 ∈ ℤ ) |
| 66 | 65 | adantl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → 𝑧 ∈ ℤ ) |
| 67 | 52 66 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → 𝑧 ∈ ℤ ) |
| 68 | 67 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → 𝑧 ∈ ℤ ) |
| 69 | 68 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → 𝑧 ∈ ℤ ) |
| 70 | lcmfunsn | ⊢ ( ( ( 𝑌 ∪ 𝑦 ) ⊆ ℤ ∧ ( 𝑌 ∪ 𝑦 ) ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) | |
| 71 | 57 62 69 70 | syl3anc | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( ( 𝑌 ∪ 𝑦 ) ∪ { 𝑧 } ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 72 | 49 71 | eqtrd | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 73 | 72 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) ) |
| 74 | 54 | anim1i | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
| 75 | 74 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) |
| 76 | id | ⊢ ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) | |
| 77 | 75 76 | mpan9 | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) |
| 78 | 77 | oveq1d | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) ) |
| 79 | 34 | adantl | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 80 | 79 | adantl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 81 | 55 | anim2i | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ ℤ ) ) |
| 82 | 81 | ancomd | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) ) |
| 83 | lcmfcl | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) | |
| 84 | 82 83 | syl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℕ0 ) |
| 85 | 84 | nn0zd | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ 𝑦 ) ∈ ℤ ) |
| 86 | lcmass | ⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℤ ∧ ( lcm ‘ 𝑦 ) ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) | |
| 87 | 80 85 69 86 | syl3anc | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 88 | 87 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 89 | 78 88 | eqtrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) lcm 𝑧 ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 90 | 73 89 | eqtrd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 91 | 53 | adantr | ⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ⊆ ℤ ) |
| 92 | simpr | ⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑦 ∈ Fin ) | |
| 93 | 66 | adantr | ⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → 𝑧 ∈ ℤ ) |
| 94 | 91 92 93 | 3jca | ⊢ ( ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) ∧ 𝑦 ∈ Fin ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
| 95 | 94 | ex | ⊢ ( ( 𝑦 ⊆ ℤ ∧ { 𝑧 } ⊆ ℤ ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 96 | 52 95 | sylbir | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 97 | 96 | adantr | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( 𝑦 ∈ Fin → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) ) |
| 98 | 97 | impcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) ) |
| 99 | lcmfunsn | ⊢ ( ( 𝑦 ⊆ ℤ ∧ 𝑦 ∈ Fin ∧ 𝑧 ∈ ℤ ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) | |
| 100 | 98 99 | syl | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) |
| 101 | 100 | oveq2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) |
| 102 | 101 | eqeq2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
| 103 | 102 | adantr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ↔ ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( ( lcm ‘ 𝑦 ) lcm 𝑧 ) ) ) ) |
| 104 | 90 103 | mpbird | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) ) ∧ ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 105 | 104 | exp31 | ⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 106 | 105 | com23 | ⊢ ( 𝑦 ∈ Fin → ( ( ( 𝑦 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑦 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑦 ) ) ) → ( ( ( 𝑦 ∪ { 𝑧 } ) ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 107 | 11 18 25 32 45 106 | findcard2 | ⊢ ( 𝑍 ∈ Fin → ( ( 𝑍 ⊆ ℤ ∧ ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 108 | 107 | expd | ⊢ ( 𝑍 ∈ Fin → ( 𝑍 ⊆ ℤ → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) ) |
| 109 | 108 | impcom | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) ) |
| 110 | 109 | impcom | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ 𝑍 ) ) ) |