This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for the _lcm function. (Contributed by AV, 27-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfass | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( { ( lcm ‘ 𝑌 ) } ∪ 𝑍 ) ) = ( lcm ‘ ( 𝑌 ∪ { ( lcm ‘ 𝑍 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcmfcl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0zd | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ 𝑌 ) ∈ ℤ ) |
| 3 | lcmfsn | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℤ → ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) = ( abs ‘ ( lcm ‘ 𝑌 ) ) ) |
| 5 | nn0re | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( lcm ‘ 𝑌 ) ∈ ℝ ) | |
| 6 | nn0ge0 | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → 0 ≤ ( lcm ‘ 𝑌 ) ) | |
| 7 | 5 6 | jca | ⊢ ( ( lcm ‘ 𝑌 ) ∈ ℕ0 → ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) ) |
| 8 | absid | ⊢ ( ( ( lcm ‘ 𝑌 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑌 ) ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) | |
| 9 | 1 7 8 | 3syl | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( abs ‘ ( lcm ‘ 𝑌 ) ) = ( lcm ‘ 𝑌 ) ) |
| 10 | 4 9 | eqtrd | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) = ( lcm ‘ 𝑌 ) ) |
| 11 | lcmfcl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ0 ) | |
| 12 | 11 | nn0zd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℤ ) |
| 13 | lcmfsn | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℤ → ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) = ( abs ‘ ( lcm ‘ 𝑍 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) = ( abs ‘ ( lcm ‘ 𝑍 ) ) ) |
| 15 | nn0re | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℕ0 → ( lcm ‘ 𝑍 ) ∈ ℝ ) | |
| 16 | nn0ge0 | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℕ0 → 0 ≤ ( lcm ‘ 𝑍 ) ) | |
| 17 | 15 16 | jca | ⊢ ( ( lcm ‘ 𝑍 ) ∈ ℕ0 → ( ( lcm ‘ 𝑍 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑍 ) ) ) |
| 18 | absid | ⊢ ( ( ( lcm ‘ 𝑍 ) ∈ ℝ ∧ 0 ≤ ( lcm ‘ 𝑍 ) ) → ( abs ‘ ( lcm ‘ 𝑍 ) ) = ( lcm ‘ 𝑍 ) ) | |
| 19 | 11 17 18 | 3syl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( abs ‘ ( lcm ‘ 𝑍 ) ) = ( lcm ‘ 𝑍 ) ) |
| 20 | 14 19 | eqtr2d | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) = ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) ) |
| 21 | 10 20 | oveqan12d | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) lcm ( lcm ‘ 𝑍 ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) ) ) |
| 22 | 2 | snssd | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → { ( lcm ‘ 𝑌 ) } ⊆ ℤ ) |
| 23 | snfi | ⊢ { ( lcm ‘ 𝑌 ) } ∈ Fin | |
| 24 | 22 23 | jctir | ⊢ ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) → ( { ( lcm ‘ 𝑌 ) } ⊆ ℤ ∧ { ( lcm ‘ 𝑌 ) } ∈ Fin ) ) |
| 25 | lcmfun | ⊢ ( ( ( { ( lcm ‘ 𝑌 ) } ⊆ ℤ ∧ { ( lcm ‘ 𝑌 ) } ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( { ( lcm ‘ 𝑌 ) } ∪ 𝑍 ) ) = ( ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) lcm ( lcm ‘ 𝑍 ) ) ) | |
| 26 | 24 25 | sylan | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( { ( lcm ‘ 𝑌 ) } ∪ 𝑍 ) ) = ( ( lcm ‘ { ( lcm ‘ 𝑌 ) } ) lcm ( lcm ‘ 𝑍 ) ) ) |
| 27 | 12 | snssd | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → { ( lcm ‘ 𝑍 ) } ⊆ ℤ ) |
| 28 | snfi | ⊢ { ( lcm ‘ 𝑍 ) } ∈ Fin | |
| 29 | 27 28 | jctir | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) → ( { ( lcm ‘ 𝑍 ) } ⊆ ℤ ∧ { ( lcm ‘ 𝑍 ) } ∈ Fin ) ) |
| 30 | lcmfun | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( { ( lcm ‘ 𝑍 ) } ⊆ ℤ ∧ { ( lcm ‘ 𝑍 ) } ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ { ( lcm ‘ 𝑍 ) } ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) ) ) | |
| 31 | 29 30 | sylan2 | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( 𝑌 ∪ { ( lcm ‘ 𝑍 ) } ) ) = ( ( lcm ‘ 𝑌 ) lcm ( lcm ‘ { ( lcm ‘ 𝑍 ) } ) ) ) |
| 32 | 21 26 31 | 3eqtr4d | ⊢ ( ( ( 𝑌 ⊆ ℤ ∧ 𝑌 ∈ Fin ) ∧ ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ) ) → ( lcm ‘ ( { ( lcm ‘ 𝑌 ) } ∪ 𝑍 ) ) = ( lcm ‘ ( 𝑌 ∪ { ( lcm ‘ 𝑍 ) } ) ) ) |