This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of integrals of integrable functions converges to the integral of the limit function. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| itgulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| itgulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) | ||
| itgulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| itgulm.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | ||
| Assertion | itgulm | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ⇝ ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | itgulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | itgulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) | |
| 4 | itgulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 5 | itgulm.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | |
| 6 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 7 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 8 | ulmf2 | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 9 | 7 4 8 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 11 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ 𝑧 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) ) | |
| 12 | eqidd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑧 ) ) | |
| 13 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) |
| 14 | simpr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 𝑟 ∈ ℝ+ ) | |
| 15 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
| 16 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 17 | fdm | ⊢ ( 𝐺 : 𝑆 ⟶ ℂ → dom 𝐺 = 𝑆 ) | |
| 18 | 4 16 17 | 3syl | ⊢ ( 𝜑 → dom 𝐺 = 𝑆 ) |
| 19 | 1 2 3 4 5 | iblulm | ⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |
| 20 | iblmbf | ⊢ ( 𝐺 ∈ 𝐿1 → 𝐺 ∈ MblFn ) | |
| 21 | mbfdm | ⊢ ( 𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol ) | |
| 22 | 19 20 21 | 3syl | ⊢ ( 𝜑 → dom 𝐺 ∈ dom vol ) |
| 23 | 18 22 | eqeltrrd | ⊢ ( 𝜑 → 𝑆 ∈ dom vol ) |
| 24 | mblss | ⊢ ( 𝑆 ∈ dom vol → 𝑆 ⊆ ℝ ) | |
| 25 | ovolge0 | ⊢ ( 𝑆 ⊆ ℝ → 0 ≤ ( vol* ‘ 𝑆 ) ) | |
| 26 | 23 24 25 | 3syl | ⊢ ( 𝜑 → 0 ≤ ( vol* ‘ 𝑆 ) ) |
| 27 | mblvol | ⊢ ( 𝑆 ∈ dom vol → ( vol ‘ 𝑆 ) = ( vol* ‘ 𝑆 ) ) | |
| 28 | 23 27 | syl | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) = ( vol* ‘ 𝑆 ) ) |
| 29 | 26 28 | breqtrrd | ⊢ ( 𝜑 → 0 ≤ ( vol ‘ 𝑆 ) ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → 0 ≤ ( vol ‘ 𝑆 ) ) |
| 31 | 15 30 | ge0p1rpd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ+ ) |
| 32 | 14 31 | rpdivcld | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ+ ) |
| 33 | 1 6 10 11 12 13 32 | ulmi | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
| 34 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑛 ∈ 𝑍 ) |
| 35 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 36 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) : 𝑆 ⟶ ℂ ) |
| 38 | 37 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 39 | 38 | adantllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑛 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 40 | 39 | adantlrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ∈ ℂ ) |
| 41 | 37 | feqmptd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ) |
| 42 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝐿1 ) |
| 43 | 41 42 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 44 | 43 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 45 | 4 16 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 46 | 45 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 47 | 46 | ad4ant14 | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 48 | 45 | feqmptd | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
| 49 | 48 19 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 50 | 49 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑥 ) ) ∈ 𝐿1 ) |
| 51 | 40 44 47 50 | itgsub | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 = ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) |
| 52 | 51 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) = ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) ) |
| 53 | 40 47 | subcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 54 | 40 44 47 50 | iblsub | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ 𝐿1 ) |
| 55 | 53 54 | itgcl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ∈ ℂ ) |
| 56 | 55 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) ∈ ℝ ) |
| 57 | 53 | abscld | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 58 | 53 54 | iblabs | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 59 | 57 58 | itgrecl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ∈ ℝ ) |
| 60 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 61 | 60 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑟 ∈ ℝ ) |
| 62 | 53 54 | itgabs | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) ≤ ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ) |
| 63 | 32 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ+ ) |
| 64 | 63 | rpred | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ ) |
| 65 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
| 66 | 64 65 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ∈ ℝ ) |
| 67 | fconstmpt | ⊢ ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) | |
| 68 | 23 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑆 ∈ dom vol ) |
| 69 | 63 | rpcnd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) |
| 70 | iblconst | ⊢ ( ( 𝑆 ∈ dom vol ∧ ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) → ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) ∈ 𝐿1 ) | |
| 71 | 68 65 69 70 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑆 × { ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) } ) ∈ 𝐿1 ) |
| 72 | 67 71 | eqeltrrid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ∈ 𝐿1 ) |
| 73 | 64 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℝ ) |
| 74 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) | |
| 75 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) | |
| 76 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 77 | 75 76 | oveq12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 78 | 77 | fveq2d | ⊢ ( 𝑧 = 𝑥 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 79 | 78 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
| 80 | 79 | rspccva | ⊢ ( ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
| 81 | 74 80 | sylan | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
| 82 | 57 73 81 | ltled | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
| 83 | 58 72 57 73 82 | itgle | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ≤ ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 ) |
| 84 | itgconst | ⊢ ( ( 𝑆 ∈ dom vol ∧ ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ∈ ℂ ) → ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) | |
| 85 | 68 65 69 84 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) d 𝑥 = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
| 86 | 83 85 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 ≤ ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
| 87 | 61 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 𝑟 ∈ ℂ ) |
| 88 | 65 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) ∈ ℂ ) |
| 89 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ+ ) |
| 90 | 89 | rpcnd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℂ ) |
| 91 | 89 | rpne0d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ≠ 0 ) |
| 92 | 87 88 90 91 | div23d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) = ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) ) |
| 93 | 65 | ltp1d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ) |
| 94 | peano2re | ⊢ ( ( vol ‘ 𝑆 ) ∈ ℝ → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ) | |
| 95 | 65 94 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ) |
| 96 | rpgt0 | ⊢ ( 𝑟 ∈ ℝ+ → 0 < 𝑟 ) | |
| 97 | 96 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → 0 < 𝑟 ) |
| 98 | ltmul2 | ⊢ ( ( ( vol ‘ 𝑆 ) ∈ ℝ ∧ ( ( vol ‘ 𝑆 ) + 1 ) ∈ ℝ ∧ ( 𝑟 ∈ ℝ ∧ 0 < 𝑟 ) ) → ( ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) | |
| 99 | 65 95 61 97 98 | syl112anc | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( vol ‘ 𝑆 ) < ( ( vol ‘ 𝑆 ) + 1 ) ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
| 100 | 93 99 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) |
| 101 | 61 65 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( 𝑟 · ( vol ‘ 𝑆 ) ) ∈ ℝ ) |
| 102 | 101 61 89 | ltdivmul2d | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) < 𝑟 ↔ ( 𝑟 · ( vol ‘ 𝑆 ) ) < ( 𝑟 · ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) |
| 103 | 100 102 | mpbird | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 · ( vol ‘ 𝑆 ) ) / ( ( vol ‘ 𝑆 ) + 1 ) ) < 𝑟 ) |
| 104 | 92 103 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) · ( vol ‘ 𝑆 ) ) < 𝑟 ) |
| 105 | 59 66 61 86 104 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ∫ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) d 𝑥 < 𝑟 ) |
| 106 | 56 59 61 62 105 | lelttrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ∫ 𝑆 ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) d 𝑥 ) < 𝑟 ) |
| 107 | 52 106 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑛 ∈ 𝑍 ∧ ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
| 108 | 107 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑛 ∈ 𝑍 ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 109 | 34 108 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 110 | 109 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 111 | 110 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 112 | 111 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑧 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) < ( 𝑟 / ( ( vol ‘ 𝑆 ) + 1 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 113 | 33 112 | mpd | ⊢ ( ( 𝜑 ∧ 𝑟 ∈ ℝ+ ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
| 114 | 113 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) |
| 115 | 1 | fvexi | ⊢ 𝑍 ∈ V |
| 116 | 115 | mptex | ⊢ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ∈ V |
| 117 | 116 | a1i | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ∈ V ) |
| 118 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 119 | 118 | fveq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 120 | 119 | adantr | ⊢ ( ( 𝑘 = 𝑛 ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) ) |
| 121 | 120 | itgeq2dv | ⊢ ( 𝑘 = 𝑛 → ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
| 122 | eqid | ⊢ ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) = ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) | |
| 123 | itgex | ⊢ ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ∈ V | |
| 124 | 121 122 123 | fvmpt | ⊢ ( 𝑛 ∈ 𝑍 → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ‘ 𝑛 ) = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
| 125 | 124 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ‘ 𝑛 ) = ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ) |
| 126 | 46 49 | itgcl | ⊢ ( 𝜑 → ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 127 | 38 43 | itgcl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 ∈ ℂ ) |
| 128 | 1 2 117 125 126 127 | clim2c | ⊢ ( 𝜑 → ( ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ⇝ ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ↔ ∀ 𝑟 ∈ ℝ+ ∃ 𝑗 ∈ 𝑍 ∀ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ( abs ‘ ( ∫ 𝑆 ( ( 𝐹 ‘ 𝑛 ) ‘ 𝑥 ) d 𝑥 − ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) ) < 𝑟 ) ) |
| 129 | 114 128 | mpbird | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝑍 ↦ ∫ 𝑆 ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) d 𝑥 ) ⇝ ∫ 𝑆 ( 𝐺 ‘ 𝑥 ) d 𝑥 ) |