This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform limit of integrable functions is integrable. (Contributed by Mario Carneiro, 3-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| itgulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| itgulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) | ||
| itgulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | ||
| itgulm.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | ||
| Assertion | iblulm | ⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgulm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | itgulm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | itgulm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝐿1 ) | |
| 4 | itgulm.u | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) | |
| 5 | itgulm.s | ⊢ ( 𝜑 → ( vol ‘ 𝑆 ) ∈ ℝ ) | |
| 6 | 3 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝑍 ) |
| 7 | ulmf2 | ⊢ ( ( 𝐹 Fn 𝑍 ∧ 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 ) → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) | |
| 8 | 6 4 7 | syl2anc | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ( ℂ ↑m 𝑆 ) ) |
| 9 | eqidd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ 𝑥 ∈ 𝑆 ) ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | |
| 10 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 11 | 1rp | ⊢ 1 ∈ ℝ+ | |
| 12 | 11 | a1i | ⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
| 13 | 1 2 8 9 10 4 12 | ulmi | ⊢ ( 𝜑 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 14 | 1 | r19.2uz | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) |
| 16 | ulmcl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝐺 : 𝑆 ⟶ ℂ ) | |
| 17 | 4 16 | syl | ⊢ ( 𝜑 → 𝐺 : 𝑆 ⟶ ℂ ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 19 | 18 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 20 | 8 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) ) |
| 21 | elmapi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ℂ ↑m 𝑆 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) | |
| 22 | 20 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 23 | 22 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) : 𝑆 ⟶ ℂ ) |
| 24 | 23 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ∈ ℂ ) |
| 25 | 18 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑧 ) ∈ ℂ ) |
| 26 | 24 25 | nncand | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝐺 ‘ 𝑧 ) ) |
| 27 | 26 | mpteq2dva | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝑆 ↦ ( 𝐺 ‘ 𝑧 ) ) ) |
| 28 | 19 27 | eqtr4d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ) |
| 29 | 23 | feqmptd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ) |
| 30 | 3 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 ) |
| 31 | 30 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 ) |
| 32 | 29 31 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) ) ∈ 𝐿1 ) |
| 33 | 24 25 | subcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) ∧ 𝑧 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ∈ ℂ ) |
| 34 | ulmscl | ⊢ ( 𝐹 ( ⇝𝑢 ‘ 𝑆 ) 𝐺 → 𝑆 ∈ V ) | |
| 35 | 4 34 | syl | ⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 36 | 35 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝑆 ∈ V ) |
| 37 | 36 24 25 29 19 | offval2 | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∘f − 𝐺 ) = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) |
| 38 | iblmbf | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ 𝐿1 → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) | |
| 39 | 31 38 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ MblFn ) |
| 40 | iblmbf | ⊢ ( 𝑥 ∈ 𝐿1 → 𝑥 ∈ MblFn ) | |
| 41 | 40 | ssriv | ⊢ 𝐿1 ⊆ MblFn |
| 42 | fss | ⊢ ( ( 𝐹 : 𝑍 ⟶ 𝐿1 ∧ 𝐿1 ⊆ MblFn ) → 𝐹 : 𝑍 ⟶ MblFn ) | |
| 43 | 3 41 42 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ MblFn ) |
| 44 | 1 2 43 4 | mbfulm | ⊢ ( 𝜑 → 𝐺 ∈ MblFn ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 ∈ MblFn ) |
| 46 | 39 45 | mbfsub | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∘f − 𝐺 ) ∈ MblFn ) |
| 47 | 37 46 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ) |
| 48 | eqid | ⊢ ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) | |
| 49 | 48 33 | dmmptd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) = 𝑆 ) |
| 50 | 49 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) = ( vol ‘ 𝑆 ) ) |
| 51 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ 𝑆 ) ∈ ℝ ) |
| 52 | 50 51 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ ℝ ) |
| 53 | 1re | ⊢ 1 ∈ ℝ | |
| 54 | 22 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ∈ ℂ ) |
| 55 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐺 : 𝑆 ⟶ ℂ ) |
| 56 | 55 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝐺 ‘ 𝑥 ) ∈ ℂ ) |
| 57 | 54 56 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ ℂ ) |
| 58 | 57 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 59 | ltle | ⊢ ( ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) | |
| 60 | 58 53 59 | sylancl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) |
| 61 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) = ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) ) | |
| 62 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑥 ) ) | |
| 63 | 61 62 | oveq12d | ⊢ ( 𝑧 = 𝑥 → ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 64 | ovex | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ∈ V | |
| 65 | 63 48 64 | fvmpt | ⊢ ( 𝑥 ∈ 𝑆 → ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 66 | 65 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) = ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) |
| 67 | 66 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) = ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ) |
| 68 | 67 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ↔ ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) ≤ 1 ) ) |
| 69 | 60 68 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 70 | 69 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 → ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) ) |
| 71 | 70 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) |
| 72 | 71 49 | raleqtrrdv | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) |
| 73 | brralrspcev | ⊢ ( ( 1 ∈ ℝ ∧ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 1 ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) | |
| 74 | 53 72 73 | sylancr | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) |
| 75 | bddibl | ⊢ ( ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ MblFn ∧ ( vol ‘ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ ℝ ∧ ∃ 𝑟 ∈ ℝ ∀ 𝑥 ∈ dom ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ( abs ‘ ( ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ‘ 𝑥 ) ) ≤ 𝑟 ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) | |
| 76 | 47 52 74 75 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ∈ 𝐿1 ) |
| 77 | 24 32 33 76 | iblsub | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → ( 𝑧 ∈ 𝑆 ↦ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑧 ) − ( 𝐺 ‘ 𝑧 ) ) ) ) ∈ 𝐿1 ) |
| 78 | 28 77 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ 𝑍 ∧ ∀ 𝑥 ∈ 𝑆 ( abs ‘ ( ( ( 𝐹 ‘ 𝑘 ) ‘ 𝑥 ) − ( 𝐺 ‘ 𝑥 ) ) ) < 1 ) ) → 𝐺 ∈ 𝐿1 ) |
| 79 | 15 78 | rexlimddv | ⊢ ( 𝜑 → 𝐺 ∈ 𝐿1 ) |